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Chapter 6 Continued: Partitioning Methods

• Partitioning methods fix the number of clusters k and seek the best possible partition

for that k.

• The goal is to choose the partition which gives the optimal value for some clustering

criterion, or objective function.

• In reality, we cannot search all possible partitions to try to optimize the clustering

criterion, but the algorithms are designed to search intelligently among the partitions.

• For a fixed k, partitioning methods are able to investigate far more possible partitions

than a hierarchical method is.

• In practice, it is recommended to run a partitioning method for several choices of k

and examine the resulting clusterings.
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K-means Clustering

• The goal of K-means, the most well-known partitioning method, is to find the

partition of n objects into k clusters that minimizes a within-cluster sum of squares

criterion.

• In the traditional K-means approach, “closeness” to the cluster centers is defined

in terms of squared Euclidean distance, defined by:

d2E(x, x̄c) = (x− x̄c)
′
(x− x̄c) =

∑
m
(xim − x̄cm)

2,

where x = (x1, . . . , xq)
′ is any particular observation and x̄c is the centroid

(multivariate mean vector) for, say, cluster c.
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K-means Clustering (Continued)

• The goal is to minimize the sum (over all objects within all clusters) of these squared

Euclidean distances:

WSS =
k∑

c=1

∑
i∈c

d2E(xi, x̄c)

• In practice, K-means will not generally achieve the global minimum of this criterion

over the whole space of partitions.

• In fact, only under certain conditions will it achieve the local minimum (Selim and

Ismail, 1984).
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The K-means Algorithm

• The K-means algorithm (MacQueen, 1967) begins by randomly allocating the n

objects into k clusters (or randomly specifying k centroids).

• One at a time, the algorithm moves each object to the cluster whose centroid is

closest to it, using the measure of closeness d2E(x, x̄c).

• When an object is moved, the centroids are immediately recalculated for the cluster

gaining the object and the cluster losing it.

• The method repeatedly cycles though the objects until no reassignments of objects

take place.

• The final clustering result will somewhat depend on the initial configuration of the

objects.

• In practice, it is good to rerun the algorithm a few times (with different starting points)

to make sure the result is stable.

• The R function kmeans performs K-means clustering.
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Ward’s Method

• The method of Ward (1963) is a hybrid of hierarchical clustering and K-means.

• It begins with n clusters and joins clusters together, one step at a time.

• At each step, the method searches over all possible ways to join a pair of clusters

so that the K-means criterion WSS is minimized for that step.

• It begins with each object as its own cluster (so that WSS = 0) and concludes

with all objects in one cluster.

• TheR functionhclust performs Ward’s method if the optionmethod = ’ward’

is specified.
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K-medoids Clustering

• The K-medoids algorithm (Kaufman and Rousseeuw, 1987) is a robust alternative

K-means.

• It attempts to minimize the criterion

CritMed =
k∑

c=1

∑
i∈c

d(xi,mc)

where mc is a medoid, or “most representative object,” for cluster c.

• The algorithm begins (in the “build step”) by selecting k such representative objects.

• It proceeds by assigning each object to the cluster with the closest medoid.

• Then (in the “swap step”), if swapping any non-medoid object with a medoid results

in a decrease in the criterion CritMed, the swap is made.

• The algorithm stops when no swap can decrease CritMed.
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K-medoids Clustering (Continued)

• Like K-means, the K-medoids algorithm does not globally minimize its criterion in

general.

• The R function pam in the cluster package performs K-medoids clustering.

• An advantage of K-medoids is that (unlike kmeans) the function can accept a

dissimilarity matrix, as well as a raw data matrix.

• This is because the criterion to be minimized is a direct sum of pairwise

dissimilarities between objects.

• The pam function also produces tools called the silhouette plot and average

silhouette width to guide the choice of k (see examples).
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Specialized Partitioning Methods

• The K-medoids algorithm is computationally infeasible for very large n

(n > 5000 or so).

• The R function clara (Clustering Large Applications) is designed as a large-

sample version of pam.

• With clara, the medoids are calculated using randomly selected subsets of the

data.

• The build-step and swap-step are carried out on the subsets rather than the entire

data set.

• Fuzzy Cluster Analysis (implemented by fanny in R) assumes each object can

have partial membership in several clusters.

• Rather than assigning each object to only one cluster, it assigns a “membership

coefficient” for each cluster to an object that reflects the “degree of membership” of

the object to that cluster.

STAT J530 Page 8



University of South Carolina Hitchcock

Objective Methods to Determine the Number of Clusters k

• At some point we need to choose a single value of k to get a clustering solution.

• A variety of criteria have been proposed to pick the best value of k.

• The average silhouette width is based on the difference between the average

dissimilarity of objects to other objects in their own cluster and the average dissimi-

larity of objects to the objects in a “neighbor cluster.”

• The larger the average silhouette width, the better the clustering of the objects.

• We could calculate the average silhouette width for clusterings based on several

values of k and choose the k with the largest average silhouette width.

• The silhouette function in the cluster package of R gives the average silhouette width

for any clustering result and distance matrix.
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Other Methods to Determine the Number of Clusters

• Another criterion for choosing k is the Dunn index, which is implemented with the

dunn function in the clValid package.

• Especially with K-means clustering, a common way to choose k is to plot the within-

cluster sum-of-squares WSS for the K-means partitions for a variety of choices of

k.

• As k increases, the corresponding WSS will decrease, and at some point will level

off.

• The “best” choice of k usually occurs near the “elbow” in this plot.
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Model-based Clustering

• Neither hierarchical nor partitioning methods assume a specific statistical model for

the data.

• They are strictly exploratory tools, and no formal inference about a wider

population is possible.

• Model-based clustering assumes that the population generating the data consists of

k subpopulations, which correspond to the k clusters we seek.

• Therefore, the distribution for the data is assumed to be composed of k densities.

• This idea was originally proposed by Scott and Symons (1971) but fully developed

in recent years by Banfield and Raftery (1993) and Fraley and Raftery (2002).
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Clustering Model Setup

• Let γ = [γ1, . . . , γn]
′

be a vector of cluster labels, such that γi = j if observation

xi is from the j-th subpopulation.

• Suppose the subpopulation densities are denoted by fj(x;θj), where θj contains

the set of unknown parameters for the j-th density.

• Then the likelihood, given the observed data, is:

L(θ1, . . . ,θk,γ|x1, . . . ,xn) =
n∏

i=1

fγi(xi;θγi).

• Fitting the model amounts to choosing θ1, . . . ,θk,γ to maximize this likelihood.

• The estimated γ is the “clustering vector” that defines which cluster each object is

assigned to.
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The Multivariate Normality Assumption

• We may assume that each subpopulation (j = 1, . . . , k) follows a multivariate

normal density having mean vectors µj and covariance matrices Σj , for j =

1, . . . , k, as its parameters.

• Then the likelihood becomes

L(θ1, . . . ,θk,γ) ∝
k∏

j=1

∏
i∈fj

|Σj|1/2 exp
[
−1

2
(xi − µj)

′
Σ−1

j (xi − µj)
]
.

• The MLE of µj is x̄j , the sample mean vector for the observations in subpopulation

j.
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The Multivariate Normality Assumption (continued)

• Replacing µj with x̄j , the log-likelihood function is a constant plus

−1

2

k∑
j=1

trace(WjΣ
−1
j + n ln |Σj|),

where Wj is a matrix containing the sums of squares and cross products of

variables for observations in subpopulation j.

• We can assume a certain structure for the covariance matrices Σj (j = 1, . . . , k)

and then determine computationally the value of γ that maximizes this (log) likeli-

hood.
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Possible Covariance Structures

• We could consider a few possible covariance structures.

• A simple (maybe unrealistic!) assumption is that each subpopulation has the same

covariance structure and that all the Σj = σ2I.

• In this case, γ is chosen so that the total within-group sum-of-squares trace(
∑k

j=1Wj)

is minimized.

• This tends to produce clusters that are spherical and roughly of equal size.

• A slightly more complicated assumption is that each subpopulation has the same

covariance structure, i.e., Σj = Σ for all j = 1, . . . , k.

• This tends to produce clusters that are elliptical with roughly the same directional

slope.
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Other Covariance Structures

• An extremely unrestrictive assumption is that each subpopulation may have a

completely different covariance structure, Σj, j = 1, . . . , k.

• This may produce clusters that are different in size, shape, and orientation.

• We might consider assumptions that are less restrictive than the equal-covariances

assumption yet more parsimonious than the unstructured-covariances assumption.

• The covariance structure we assume leads to a clustering solution in which the sizes,

shapes, and orientations of the clusters might be the same or different.

• In practice, the R function Mclust in the mclust package considers many such

models, letting the covariance assumptions and the number of clusters k vary.

• Usually the Bayesian information Criterion (BIC) is used to choose the best of all

these competing models and thus determine the model-based clustering result.
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Clustering Binary Data

• When the q variables measured on each observation are binary (e.g., representing

the presence or absence of some characteristic), the objects may still be clustered

based on a distance measure.

• Suppose, for each individual (i = 1, . . . , n), we let the binary variable Xij (for

j = 1, . . . , q) take the value 0 or 1.

• Then two individuals have a “match” on a binary variable if both individuals have the

same value for that variable (either both 0 or both 1).

• Otherwise, the two individuals are said to have a “mismatch” on the binary variable.

• Calculating squared Euclidean distances
∑q

j=1(Xij −Xi′j)
2 between each pair of

rows of this sort of data matrix of 0’s and 1’s amounts to counting the total number

of mismatches for each pair of objects.

• Once we calculate the distances, we can input them into a standard clustering

algorithm like K-medoids or a hierarchical method.
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Meaning of Matches and Mismatches for Binary Data

• Using squared Euclidean distance essentially treats 0-0 matches and 1-1 matches

as equally important. Is this appropriate?

• It depends on the situation: If the binary variable is measuring a very rare (or very

common) characteristic, then a 1-1 match may be more meaningful than a 0-0 match

(or vice versa).

• If Xi = 1 if an individual is a strict vegan and 0 otherwise, then a 1-1 match might

indicate two similar individuals, but a 0-0 match would be less informative.

• If Xi = 1 if an individual knows how to read and 0 otherwise, then a 0-0 match

might indicate two similar individuals, but a 1-1 match would be less informative.
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Other Measures of Distance for Binary Data

• Define a 2 × 2 table counting the matches (a = total 0-0 matches, d = total 1-1

matches) and mismatches (b = total 0-1 mismatches, c = total 1-0 mismatches) for

a pair of objects:

Yi′

Yi 0 1 Totals

0 a b a+ b

1 c d c+ d

Totals a+ c b+ d q = a+ b+ c+ d

• Defining the distance between the two objects to be b+c
q gives equal weights to 0-0

matches and 1-1 matches.
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Other Measures of Distance for Binary Data (Continued)

• Defining the distance between the two objects to be b+c
b+c+d ignores 0-0 matches,

treating them as irrelevant (vegan example?).

• Defining the distance between the two objects to be b+c
a+b+c ignores 1-1 matches,

treating them as irrelevant (reading example?).

• Several other distances measures based on a, b, c, d are possible (see Johnson

and Wichern, p. 674).
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Gower Dissimilarities for Clustering Mixed Data

• Sometimes we have data that are mixed data having different variable types.

• For example, perhaps some of the variables are numerical, others are binary or

nominal, and maybe still others are ordinal (categorical with ordered categories).

• Gower (1971) developed a dissimilarity measure for mixed data that combine

contributions to the dissimilarity from each variable.

• For any pair of individuals, we have the following rules for calculating the Gower

dissimilarity between those two individuals:
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Calculation of Gower Dissimilarities

• For a nominal or binary variable, the contribution is 1 if the two individuals do not

have matching categories on that variable and 0 if the individuals match on that

variable.

• For a numerical variable, the contribution is the absolute difference in the variable’s

values for the two observations, divided by the total range (max − min) for that

variable in the data set.

• For an ordinal variable, the categories are numerically labeled 1, 2, . . . and then the

contribution is calculated the same way as for numerical variables.

• The overall Gower dissimilarity is the mean (possibly weighted, if desired) of the

contributions of each of the variables.
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Clustering Mixed Data

• The Gower dissimilarities can be calculated using the daisy function in R.

• The nominal variables should be saved as factor columns and the ordinal

variables should be saved as ordered columns in R.

• Once we calculate the distances, we can input them into a standard clustering

algorithm like K-medoids or a hierarchical method.

• This method is implemented in R on the heart disease data set.
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