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Classification: Linear Discriminant Analysis

• Discriminant analysis uses sample information about individuals that are known to

belong to one of several populations for the purposes of classification.

• Based on the variable values for these individuals (called the training data) whose

population memberships are known, we determine a rule to classify new individuals

(called the test data) whose population memberships are unknown.

• We can collect variable values for a new individual and use the data and this

classification rule to classify the new individual (i.e., predict which population it

belongs to).

• When there are two populations, Fisher’s Linear Discriminant Function specifies a

linear function of the q variables that best separates the sampled individuals into two

groups.

• The classification rule is then based on that linear combination of the variables.
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Examples of Classification

• Admissions officials in colleges attempt to use data on applicants (GPA, SAT scores,

etc.) to classify them into two groups: those who successfully graduate and those

who fail to graduate.

• They can use the data on previous years’ applicants (who are known to have either

graduated or not) to build a classification rule.

• Archaeologists and zooarchaeologists attempt to classify animal remains into groups

(such as male/female) based on measurements on bones.

• Marketing experts can use data on past potential customers to classify future

individuals as likely buyers or unlikely buyers.

• Lifetime data can only be measured by destroying an object. We may want to clas-

sify an object as defective or not (without destroying it) using certain preliminary

measurements, after obtaining a small sample of objects that have been seen to be

defective or not.
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Mathematical Details of Fisher’s Linear Discriminant Analysis
(LDA)

• We assume that we are classifying individuals into one of two known groups based

on their values of the variables x1, x2, . . . , xq.

• We have the data (on the q variables) for n1 individuals that are known to belong to

Group 1 and for n2 individuals that are known to belong to Group 2.

• We will use the linear combination of these variables:

z = a1x1 + a2x2 + · · ·+ aqxq

that maximizes the ratio of between-group variance of z to within-group variance of

z for the observed sample of individuals whose groups are known.

• See geometric interpretation in q = 2 dimensions.
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Mathematical Details of LDA (continued)

• That is, we choose a = (a1, . . . , aq)
′

to maximize

V =
a

′
Ba

a′Sa
,

where S is the pooled within-group sample covariance matrix, and B is the

covariance matrix of the group sample means (see p. 143 for formulas).

• For two groups, the choice of a that maximizes V is

a = S−1(x̄1 − x̄2)
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The LDA Classification Rule

• Let z = a
′
x = a1x1 + a2x2 + · · · + aqxq be the discriminant score for any

individual.

• Also let z̄1 be the sample mean of the discriminant scores for the individuals known

to come from Group 1, and let z̄2 be the mean discriminant score for the individuals

known to come from Group 2.

• Case I: Suppose z̄1 > z̄2. For a new individual with discriminant score z∗, classify

this individual into Group 1 if z∗ > (z̄1 + z̄2)/2; otherwise classify it into Group 2.

• Case II: Suppose z̄1 < z̄2. For a new individual with discriminant score z∗, classify

this individual into Group 1 if z∗ < (z̄1 + z̄2)/2; otherwise classify it into Group 2.

• The LDA method is implemented in R by the lda function in the MASS package.
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Remarks about the LDA Classification Rule

• This LDA approach assumes the data come from one of two multivariate normal

populations, each with the same covariance matrix.

• This LDA rule is equivalent to classifying an individual having data vector x into

Group 1 if and only if MVN(x, x̄1,S) > MVN(x, x̄2,S), where MVN

represents the multivariate normal density function.

• This rule is appropriate only if the prior probabilities of the individual being in each

group are equal.

• If the prior probabilities p1 and p2, are not equal, then z∗ − (z̄1 + z̄2)/2 would be

compared to ln(p2/p1) rather than to 0 as before.

• Also, the rule assumes the cost of misclassification is the same whether an individual

is misclassified into Group 1 or misclassified into Group 2.
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Generalizations to More than Two Groups

• When we have three or more groups, the classification rule can be generalized.

• If there are k (multivariate normal) populations, then we classify an individual having

data vector x into Group i if and only if MVN(x, x̄i,S) > MVN(x, x̄j,S) for

all j 6= i, where MVN represents the multivariate normal density function.

• For three groups, this is equivalent to basing the classification on a series of pairwise

rules for choosing between Groups 1 and 2, between Groups 1 and 3, and between

Groups 2 and 3 (see pp. 150-151 for details).

• This rule could actually be further generalized to the case in which the prior proba-

bilities of being in each group are not equal, and in which the populations have some

known non-normal distributions:

• Classify an individual having data vector x into Group i if and only if pifi(x) >

pjfj(x) for all j 6= i, where fj(·) is the j-th of the density functions.
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Other Types of Discriminant Analysis

• When the covariance matrices for Populations 1 and 2 are not believed to be equal,

then quadratic discriminant analysis (QDA) is more appropriate than LDA.

• QDA is more flexible than LDA, but it can often overfit the observed data,

creating a rule that classifies the known observations nearly perfectly but that is not

as generalizable to future observations.

• QDA is implemented by the R function qda in the MASS package.

• A compromise between LDA and QDA is regularized discriminant analysis.

• When the populations are not close to multivariate normal, an alternative to LDA is

logistic discrimination.
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Judging the Performance of the Discriminant Function

• To judge how well the discriminant rule is classifying, we could calculate the “plug-in”

misclassification rate, which is simply the proportion of the “known” individuals that

would be misclassified if we used the rule to classify them.

• Since the rule has been derived using those known individuals, the “plug-in” rate

typically is too optimistic — it underestimates the rate at which the rule would

misclassify new individuals.

• A better approach is the cross-validation (or “leave-one-out”) method.

• This uses all but one of the “known” individuals to derive a classification rule and

then, based on that rule, classifies the other individual.

• This is done (separately) for all the known individuals, and the misclassification rate

is the proportion of those classifications that are incorrect.

• The R function predict can help produce these classification rates.
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Using Regression Methods for Classification

• In classification problems, we use one or more numerical variables to predict the

“category” of an individual with respect to some categorical variable.

• Since a major purpose of regression is prediction, could we use regression

techniques to classify individuals?

• One option: Code the categories as numerical values (1, 2, 3, . . .) and use linear

regression to predict the category based on the numerical explanatory variables.

• Problem: We must specify an ordering of the categories, which may be arbitrary.

• It is easier with binary (two-category) response data, as the ordering is not as

important.
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Logistic Regression

• A better regression approach is to use a method designed for categorical responses:

logistic regression.

• This works best when there are only two categories: We can code them as Y = 0

or Y = 1.

• A logistic regression predicts the probability that Y = 1, given a value of some

explanatory variable X :

P (Y = 1|X) =
eβ0+β1X

1 + eβ0+β1X

• This model (unlike linear regression) will always produce a predicted probability be-

tween 0 and 1.

• The parameters β0 and β1 are estimated from the training data using the maximum

likelihood method.

• This can be done easily in R using the glm function.
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Classifications Based on Logistic Regression

• Assuming two groups, a simple classification rule is to predict that Y = 1 for any

individual whose predicted probability that Y = 1 is greater than 0.5.

• If P (Y = 1) ≤ 0.5, we would predict Y = 0 for that individual.

• If the number of individuals in the population having Y = 1 is believed to differ from

the number having Y = 0, then we could adjust our cutoff value away from 0.5.

• One option: Predict Y = 1 if P (Y = 1) > p∗, where p∗ is chosen to minimize the

misclassification rate for the individuals in the training set.
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Multiple Logistic Regression

• If we have several numerical variables measured on each individual, we can

generalize our logistic regression model to:

P (Y = 1|X1, . . . , Xq) =
eβ0+β1X1+···+βqXq

1 + eβ0+β1X1+···+βqXq

• Z-tests about the regression coefficients assess the importance of each individual

explanatory variable on the classification.

• The logistic model can be extended to situations where we are classifying into more

than 2 categories, but it is more common to use other classification methods (like

discriminant analysis) in those cases.
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