
STAT 535 HW 5 Example Solutions 
 
Exercise 12.3)   
a) Poisson regression forces the mean of the response variable to be equal to the variance of the 
response (at a fixed set of predictor values).  If in an actual data set, the variance greatly exceeds the 
mean, then the Poisson regression will likely be a poor fit. 
 
b) In negative binomial regression, the variance is allowed to exceed the mean, so it is a good model for 
"overdispersed" data. 
 
c) When the mean and the variance are similar, the Poisson regression model will likely fit well, and it 
will be a simpler model than the negative binomial. 
 
Exercise 12.4) 
a) This is the mean number of likes for a person with zero followers, when there is no emoji in the 
tweet. 
b) This is the factor by which the mean number of likes changes for a one-person increase in number of 
followers, holding fixed whether or not there is an emoji. 
c) This is the factor by which the mean number of likes changes for having an emoji compared to not 
having an emoji, holding fixed the number of followers. 

d) exp(0 + 3001) 
 
Bald eagle analysis: 
 
See course webpage for some example R code.  Below is an analysis using stan_glm: 
 
Bar graphs of generated posterior predictive distributions show a good fit for the Poisson model: 
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> tidy(eagles_model, conf.int = TRUE, conf.level = 0.95) 

# A tibble: 3 x 5 

  term          estimate std.error   conf.low conf.high 

  <chr>            <dbl>     <dbl>      <dbl>     <dbl> 

1 (Intercept) -164.       26.1     -216.      -114.     

2 year           0.0822    0.0132     0.0569     0.108  

3 hours          0.00319   0.00394   -0.00476    0.0111 

 
The ‘Year’ predictor looks important, but "number of hours" may not be an important predictor (the 

credible interval for 2 includes 0) 
 
 
Based on the within_50 and within+95 measures, the predictive accuracy looks good: 
 

> prediction_summary(model = eagles_model, data = bald_eagles) 

      mae mae_scaled within_50 within_95 

1 1.02245   0.649225 0.7027027         1 

> poisson_cv <- prediction_summary_cv(model = eagles_model,  

+                                    data = bald_eagles, k = 5) 

> poisson_cv$cv 

     mae mae_scaled within_50 within_95 

1 1.0343  0.8331364 0.7285714     0.975 

 
 
After fitting the interaction model (see R code), we see that the credible interval for the coefficient of 
the interaction term includes 0: 
 
> tidy(eagles_model_int, conf.int = TRUE, conf.level = 0.95) 

# A tibble: 4 x 5 

  term        estimate  std.error     conf.low    conf.high 

  <chr>          <dbl>      <dbl>        <dbl>        <dbl> 

1 (Intercept) -1.65e+2 27.5       -220.        -111.        

2 year         8.24e-2  0.0138       0.0553       0.110     

3 hours        5.20e-3  0.0554      -0.105        0.113     

4 year:hours  -7.91e-7  0.0000277   -0.0000551    0.0000541 

 
 
The OUT-OF-SAMPLE (CV) prediction accuracy measures for the interaction model are worse than for 
the no-interaction model: 
 
> prediction_summary(model = eagles_model_int, data = bald_eagles) 

      mae mae_scaled within_50 within_95 

1 1.02655  0.6454268 0.7027027         1 

> poisson_cv_int <- prediction_summary_cv(model = eagles_model_int,  

+                                    data = bald_eagles, k = 5) 

> poisson_cv_int$cv 

       mae mae_scaled within_50 within_95 

1 1.249765   0.872032 0.5928571 0.9428571 

 
 
 
 
 



Based on the ELPD measure, the interaction model is VERY SLIGHTLY preferred, but they are almost 
identical: 
 
> # Calculate ELPD for the models 

> loo_1 <- loo(eagles_model) 

> loo_2 <- loo(eagles_model_int) 

> loo_1$estimates 

           Estimate        SE 

elpd_loo -66.787195  5.895014 

p_loo      3.723189  1.037626 

looic    133.574389 11.790029 

> loo_2$estimates 

           Estimate        SE 

elpd_loo -66.747720  5.891948 

p_loo      3.685873  1.027018 

looic    133.495441 11.783895 

 
Exercise 13.1) 
a) Logistic (the response is binary) 
b) Normal (the response is numerical/approximately continuous depending on how the times are 
recorded) 
c) Normal (the response is numerical) 
 
Exercise 13.4(b,c,d) 
Let Y=1 if subject believes in climate change 
NOT ASSIGNED: a) Odds of belief = P(Y=1)/[1-P(Y=1)] = exp(1.43 - 0.02age) 
Probability of belief = P(Y=1) = exp(1.43 - 0.02age) / [1 + exp(1.43 - 0.02age)] 
 
b) The estimated odds of climate change belief change/decrease by a factor of exp(-0.02)=0.98 (a 2% 
decrease) for each one-year increase in the person's age. 
c) P(Y=1 | age=60) = exp(1.43 - 0.02*60) / [1 + exp(1.43 - 0.02*60)] = 0.557. 
d) P(Y=1 | age=20) = exp(1.43 - 0.02*20) / [1 + exp(1.43 - 0.02*20)] = 0.737. 
 
Exercise 13.5) 
a) (50+620)/1000 = 0.67 
b) 620/(620+30) = 0.954 
c) 50/(50+300) = 0.143 
d) We should increase c, so that the model will predict "0" for more subjects.  This will increase the 
chance of predicting "0" when the true Y really is 0.  (However, it will also increase the chance of 
wrongly predicting "0" when the true Y really is 1.) 
 
 
 
 
 
 
 
 
 
 
 



Problem 13.7: 
 
The estimated model coefficients (based on stan_glm, and this is slightly dependent on the prior 
specification): 
 
> tidy(hotel_model, effects = "fixed", conf.int = TRUE, conf.level = 0.80) 

# A tibble: 5 x 5 

  term                   estimate std.error conf.low conf.high 

  <chr>                     <dbl>     <dbl>    <dbl>     <dbl> 

1 (Intercept)            -2.09     0.216    -2.37     -1.82    

2 lead_time               0.00568  0.000703  0.00478   0.00660 

3 previous_cancellations  2.69     0.500     2.08      3.37    

4 is_repeated_guest      -0.818    0.584    -1.61     -0.117   

5 average_daily_rate      0.00781  0.00160   0.00576   0.00986 
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b) On the probability scale, the estimated model is: 
P(Y = 1 | x1,x2,x3,x4) =  
exp(-2.09+0.00568x1+2.69x2-0.818x3+0.00781x4)/[1 + exp(-2.09+0.00568x1+2.69x2-
0.818x3+0.00781x4)] 
 
 

c) For 1:  (0.0048,0.0066) 

For 2:  (2.08, 3.37) 

For 3:  (-1.61, -0.117) 

For 4:  (0.00576, 0.00986) 
 
The estimated odds that the booking is canceled increases by a factor of between exp(2.08)= 8.00 and 
exp(3.37)=29.1 for a one-unit increase in the number of times the guest has previously canceled, holding 
the other predictors constant. 
 
The estimated odds that the booking is canceled for people who were previous guests is less, i.e.,  
between exp(-1.61)= 0.2 and exp(-0.117)=0.89 times the odds of cancellation for people who were not 
previous guests, holding the other predictors constant. 
 
 
d) All of the predictors seem to be somewhat significant predictors statistically since the 80% credible 
intervals for each excludes zero.  However, only “previous cancellations” and “is repeated guest” seem 
to be important meaningfully.  For the other two, the change in odds corresponding to a unit increase in 
the predictor is small (although for those predictors, perhaps it is more meaningful to consider an 
increase of more than one unit…). 
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