
Posterior Predictive Distribution

I Recall that for a fixed value of θ, our data X follow the
distribution p(X|θ).

I However, the true value of θ is uncertain, so we should
average over the possible values of θ to get a better idea of
the distribution of X.

I Before taking the sample, the uncertainty in θ is represented
by the prior distribution p(θ). So for some new data value
xnew , averaging over p(θ) gives the prior predictive
distribution:

p(xnew ) =

∫
Θ

p(xnew , θ) dθ =

∫
Θ

p(xnew |θ)p(θ) dθ



Posterior Predictive Distribution

I After taking the sample, we have a better representation of
the uncertainty in θ via our posterior p(θ|x). So the posterior
predictive distribution for a new data point xnew is:

p(xnew |x) =

∫
Θ

p(xnew |θ, x)p(θ|x) dθ

=

∫
Θ

p(xnew |θ)p(θ|x) dθ

(since xnew is independent of the sample data x)

I This reflects how we would predict new data to behave / vary.

I If the data we did observe follow this pattern closely, it
indicates we have chosen our model and prior well.



Posterior Predictive Distribution

Example 2 again: X1, . . . ,Xn
iid∼ Poisson(λ),

λ ∼ Gamma(α, β)

λ|x = Gamma(
∑

xi + α, n + β)

Posterior predictive distribution is:

p(xnew |x) =

∞∫
0

p(xnew |λ)p(λ|x) dλ

=

∞∫
0

[
λxnew e−λ

(xnew )!

][
(n + β)

P
xi+α

Γ(
∑

xi + α)
λ

P
xi+α−1e−(n+β)λ

]
dλ



Posterior Predictive Distribution

So

p(xnew |x) =
(n + β)

P
xi+α

Γ(
∑

xi + α)Γ(xnew + 1)

∞∫
0

λxnew+
P

xi+α−1e−(n+β+1)λ dλ

=
(n + β)

P
xi+α

Γ(
∑

xi + α)Γ(xnew + 1)

Γ(xnew +
∑

xi + α)

(n + β + 1)xnew+
P

xi+α

=
Γ(xnew +

∑
xi + α)

Γ(
∑

xi + α)Γ(xnew + 1)

( n + β

n + β + 1

)P
xi+α( 1

n + β + 1

)xnew

which is a negative binomial with mean
P

xi+α
n+β and varianceP

xi+α
(n+β)2

(n + β + 1).



Posterior Predictive Distribution

I ⇒ The posterior predictive distribution has the same mean as
the posterior distribution, but a greater variance (additional
“sampling uncertainty” since we are drawing a new data
value).

I See R example (Prussian army data).



More about Posterior Predictive Distribution

I Example 1(a) again: X1, . . . ,Xn
iid∼ N(µ, σ2), σ2 known.

I Posterior for µ|x is normal with mean

µpost =
δ/τ2 + nx̄/σ2

1/τ2 + n/σ2

and variance

σ2
post =

τ2σ2

σ2 + nτ2
.

I Note xnew |µ ∼ N(µ, σ2), so the posterior predictive
distribution is:

p(xnew |x) =

∞∫
−∞

p(xnew |µ)p(µ|x) dµ.



More about Posterior Predictive Distribution

I Sometimes the form of p(xnew |x) can be derived directly, but
it is often easier to sample from p(xnew |x) using Monte Carlo
methods:

I For j = 1, . . . , J, sample

1. µ[ j ] from p(µ|x) and
2. x∗[ j ] from p(xnew |µ[ j ])

I Then x∗[1], . . . , x∗[J] are an iid sample from p(xnew |x).
I See R example with lead data.



Posterior Predictive Distribution in Regression

Example 3: In the regression setting, we have shown that the
posterior predictive distribution for a new response vector y∗ is
multivariate-t.

I To check model fit, we can generate samples from the
posterior predictive distribution (letting X∗ = the observed
sample X) and plot the values against the y -values from the
original sample.

I If an observed yi falls far from the center of the posterior
predictive distribution, this i-th observation is an outlier.

I If this occurs for many y -values, we would doubt the
adequacy of the model.

I See R example (small automobile data set).


