We can also make predictions and “prediction intervals” for new responses with specified predictor values.

For example, consider a new observation with predictor variable values in the vector $\mathbf{x}^* = (1, x_1^*, x_2^*, \ldots, x_{k-1}^*)$ (or the predictor values for several new observations could be contained in the matrix \mathbf{X}^*).

We can generate the posterior predictive distribution with \mathbf{X}^* and compute the posterior median (for a point prediction) or posterior quantiles (for a prediction interval).

See R example.
CHAPTER 7 SLIDES START HERE
Recall that classical hypothesis testing emphasizes the \textbf{p-value}: The probability (under H_0) that a test statistic would take a value as (or more) favorable to H_a as the observed value of this test statistic.

For example, given iid data $x = x_1, \ldots, x_n$ from $f(x|\theta)$, where $-\infty < \theta < \infty$, we might test $H_0 : \theta \leq 0$ vs. $H_a : \theta > 0$ using some test statistic $T(X)$ (a function of the data).

Then if we calculated $T(x) = T^*$ for our observed data x, the p-value would be:

$$p\text{-value} = P[T(X) \geq T^* | \theta = 0]$$

$$= \int_{T^*}^{\infty} f_T(t | \theta = 0) \, dt$$

where $f_T(t | \theta)$ is the distribution (density) of $T(X)$.

Issues with Classical Hypothesis Testing

- This p-value is an average over T values (and thus sample values) that \textbf{have not occurred} and are \textbf{unlikely to occur}.

- Since the inference is based on “hypothetical” data rather than \textbf{only} the \textbf{observed} data, it violates the Likelihood Principle.

- Also, the idea of conducting many repeated tests that motivate “Type I error” and “Type II error” probabilities is not sensible in situations where our study is not repeatable.
A simple approach to testing finds the posterior probabilities that θ falls in the null and alternative regions.

We first consider one-sided tests about θ of the form:

$$H_0 : \theta \leq c \quad \text{vs.} \quad H_a : \theta > c$$

for some constant c, where $-\infty < \theta < \infty$.

We may specify prior probabilities for θ such that

$$p_0 = P[-\infty < \theta \leq c] = P[\theta \in \Theta_0]$$

and

$$p_1 = 1 - p_0 = P[c < \theta < \infty] = P[\theta \notin \Theta_0]$$

where Θ_0 is the set of θ-values such that H_0 is true.
Then the **posterior probability** that H_0 is true is:

$$P[\theta \in \Theta_0|x] = \int_{-\infty}^{c} p(\theta|x) \, d\theta$$

$$= \frac{\int_{-\infty}^{c} p(x|\theta)p_0 \, d\theta}{\int_{-\infty}^{c} p(x|\theta)p_0 \, d\theta + \int_{c}^{\infty} p(x|\theta)p_1 \, d\theta}$$

by Bayes’ Law (note the denominator is the marginal distribution of X).
Commonly, we might choose an uninformative prior specification in which \(p_0 = p_1 = 1/2 \), in which case \(P[\theta \in \Theta_0|\mathbf{x}] \) simplifies to

\[
\frac{\int_{-\infty}^{\infty} p(\mathbf{x}|\theta) p_0 \, d\theta}{\int_{-\infty}^{\infty} p(\mathbf{x}|\theta) p_0 \, d\theta} = \frac{\int_{-\infty}^{\infty} p(\mathbf{x}|\theta) \, d\theta}{\int_{-\infty}^{\infty} p(\mathbf{x}|\theta) \, d\theta}
\]
Example 1 (Coal mining strike data): Let $Y =$ number of strikes in a sequence of strikes before the cessation of the series.

Gill lists Y_1, \ldots, Y_{11} for 11 such sequences in France.

The Poisson model would be natural, but for these data, the variance greatly exceeds the mean.

We choose a geometric(θ) model

$$f(y|\theta) = \theta(1 - \theta)^y$$

where θ is the probability of cessation of the strike sequence, and $y_i =$ number of strikes before cessation.

Exercise: Show that the Jeffreys prior for θ is

$$p(\theta) = \theta^{-1}(1 - \theta)^{-1/2}.$$ We will use this as our prior.
Hypothesis Testing Example

★ So the posterior is:

\[\pi(\theta | y) \propto L(\theta | y)p(\theta) \]
\[= \theta^n(1 - \theta) \sum y_i \theta^{-1} (1 - \theta)^{-1/2} \]
\[= \theta^{n-1}(1 - \theta) \sum y_i^{-1/2} \]

which is a beta\((n, \sum y_i + 1/2)\) distribution.
★ We will test \(H_0 : \theta \leq 0.05\) vs. \(H_a : \theta > 0.05\).
★ Then \(P[\theta \leq 0.05 | y] = \int_0^{0.05} \pi(\theta | y) \, d\theta\), which is the area to the left of 0.05 in the beta\((n, \sum y_i + 1/2)\) density.
★ This can be found directly (or via Monte Carlo methods).
★ See \(R\) example with coal mining strike data.
Two-Sided Tests

- Two-sided tests about θ have the form:

$$H_0 : \theta = c \text{ vs. } H_a : \theta \neq c$$

for some constant c.

- We cannot test this using a continuous prior on θ, because that would result in a prior probability $P[\theta \in \Theta_0] = 0$ and thus a posterior probability $P[\theta \in \Theta_0|\mathbf{x}] = 0$ for any data set \mathbf{x}.

- We could place a prior probability mass on the point $\theta = c$, but many Bayesians are uncomfortable with this since the value of this point mass is impossible to judge and is likely to greatly affect the posterior.
Two-Sided Tests

▶ **One solution**: Pick a small value $\epsilon > 0$ such that if θ is within ϵ of c, it is considered “practically indistinguishable” from c.

▶ Then let $\Theta_0 = [c - \epsilon, c + \epsilon]$ and find the posterior probability that $\theta \in \Theta_0$.

▶ **Example 1 again**: Testing $H_0 : \theta = 0.10$ vs. $H_a : \theta \neq 0.10$.
Letting $\epsilon = 0.003$, then $\Theta_0 = [0.097, 0.103]$ and

$$P[\theta \in \Theta_0 | y] = \int_{0.097}^{0.103} \pi(\theta | y) \, d\theta = 0.033$$

from \mathbb{R}.

▶ **Another solution** (mimicking classical approach): Derive a $100(1 - \alpha)$% (two-sided) HPD credible interval for θ. Reject $H_0 : \theta = c$ “at level α” if and only if c falls outside this credible interval.
Note: Bayesian decision theory attempts to specify the cost of a wrong decision to conclude H_0 or H_a through a loss function.

We might evaluate the Bayes risk of some decision rule, i.e., its expected loss with respect to the posterior distribution of θ.