Empirical Bayes Estimation

» In this approach, we again do not specify particular values for
the prior parameters in .

» Instead of placing a (hyperprior) distribution on ) as in
hierarchical Bayes, the empirical Bayes approach is to
estimate 1 from the data.

» This is not “purely” Bayesian, since in a sense we are using
the data to determine the prior specification.

» Furthermore, the estimation of ) must be done with
non-Bayesian techniques (like maximum likelihood or method
of moments).



Empirical Bayes Estimation

» If the prior on @ depends on hyperparameter(s) 1), then the
posterior is:
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» Now we use as the hyperparameter(s) some estimate of 1,
such as the MLE of v based on g(X|)).



Examples: Empirical Bayes Estimation

» Example 1: Let X; i Pois(A;), i =1,...,n, and let

A Gamma(a, 3) with a known, (3 unknown.
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which is negative binomial.




Examples: Empirical Bayes Estimation
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and it can be shown that the MLE of 3 is ﬁA = g.
X

» Using the prior \; ~ Gamma(a,ﬁ), the posterior for A; is thus
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» Hence the Empirical Bayes estimator for A\; (i =1,...,n) is
the posterior mean
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Examples: Empirical Bayes Estimation

Example 2(a): (One-way classification, 1 observation per group)

Xil i indep N(pi,0?), i=1,...,m

.','E N(p,7%), o2, 72 known.

» Then it can be shown
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» Hence the MLE of ¢ is clearly ¢ = X.
» The empirical Bayes estimator turns out to be
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Examples: Empirical Bayes Estimation

Example 2(b):

» If we have a one-way classification with m groups and n
observations per group, the previous example extends to
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L g N(¢,T2), o2, 72 known.

» Then note that )
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» Hence the empirical Bayes estimate of p; (i =1,...,m) is
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Examples: Empirical Bayes Estimation
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» If 72 is unknown, note that —————— is an unbiased
(X = X)?
estimator of ————, so we can use
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as the empirical Bayes estimator.

» On the other hand, if o2 is unknown, we can use

as the empirical Bayes estimator.



Empirical Bayes vs./ Hierarchical Bayes Estimation

» Hierarchical Bayes (HB) and Empirical Bayes (EB) estimators
both typically involve shrinkage.

» Some Bayesians feel EB is “less honest” since EB plugs in
estimates of the hyperparameters without accounting for the
variability associated with the estimate.

» HB places a distribution on the hyperparameters, and thus
models the uncertainty in the hyperparameter values.

» See HB/EB Comparison for the Italian Marriage Data
example on course web page.



