Empirical Bayes Estimation

- In this approach, we again do not specify particular values for the prior parameters in ψ .
- ▶ Instead of placing a (hyperprior) distribution on ψ as in hierarchical Bayes, the empirical Bayes approach is to estimate ψ from the data.
- ► This is not "purely" Bayesian, since in a sense we are using the data to determine the prior specification.
- Furthermore, the estimation of ψ must be done with non-Bayesian techniques (like maximum likelihood or method of moments).

Empirical Bayes Estimation

▶ If the prior on θ depends on hyperparameter(s) ψ , then the posterior is:

$$\pi(\theta|\mathbf{X}, \psi) = \frac{p(\theta|\psi)L(\theta|\mathbf{X})}{\int\limits_{\Theta} p(\theta|\psi)L(\theta|\mathbf{X}) d\theta}$$
$$= \frac{p(\theta|\psi)L(\theta|\mathbf{X})}{q(\mathbf{X}|\psi)}$$

Now we use as the hyperparameter(s) some estimate of ψ , such as the MLE of ψ based on $q(\mathbf{X}|\psi)$.

▶ **Example 1**: Let $X_i \stackrel{\text{iid}}{\sim} \operatorname{Pois}(\lambda_i), i = 1, \dots, n$, and let $\lambda_i \stackrel{\text{iid}}{\sim} \operatorname{Gamma}(\alpha, \beta)$ with α known, β unknown.

Then
$$q(X_i|\beta) = \int_0^\infty \left[\frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda_i^{\alpha-1} e^{-\beta \lambda_i} \right] \left[\frac{e^{-\lambda_i} \lambda_i^{x_i}}{x_i!} \right] d\lambda_i$$

$$= \frac{\beta^{\alpha}}{x_i! \Gamma(\alpha)} \int_0^\infty \lambda_i^{x_i + \alpha - 1} e^{-(\beta + 1)\lambda_i} d\lambda_i$$

$$= \frac{\beta^{\alpha} \Gamma(x_i + \alpha)}{x_i! \Gamma(\alpha)(\beta + 1)^{x_i + \alpha}}$$

$$= \binom{x_i + \alpha - 1}{\alpha - 1} \left(\frac{\beta}{\beta + 1} \right)^{\alpha} \left(\frac{1}{\beta + 1} \right)^{x_i}$$

which is negative binomial.

$$\Rightarrow q(\mathbf{X}|\beta) = \left[\prod_{i=1}^{n} {x_i + \alpha - 1 \choose \alpha - 1}\right] \left(\frac{\beta}{\beta + 1}\right)^{n\alpha} \left(\frac{1}{\beta + 1}\right)^{\sum x_i}$$

and it can be shown that the MLE of β is $\hat{\beta} = \frac{\alpha}{\bar{x}}$.

▶ Using the prior λ_i ~ Gamma $(\alpha, \hat{\beta})$, the posterior for λ_i is thus

$$\lambda_i | x_i, \hat{\beta} \sim \mathsf{Gamma}(x_i + \alpha, 1 + \hat{\beta})$$

▶ Hence the Empirical Bayes estimator for λ_i (i = 1, ..., n) is the posterior mean

$$\frac{X_i + \alpha}{1 + \alpha/\bar{X}} = \left(\frac{\bar{X}}{\bar{X} + \alpha}\right)(X_i + \alpha).$$

Example 2(a): (One-way classification, 1 observation per group)

$$X_i | \mu_i \overset{\text{indep}}{\sim} \mathcal{N}(\mu_i, \sigma^2), \quad i = 1, \dots, m$$

 $\mu_i \overset{\text{iid}}{\sim} \mathcal{N}(\phi, \tau^2), \quad \sigma^2, \tau^2 \text{ known.}$

▶ Then it can be shown

$$q(\mathbf{x}|\phi) = [2\pi(\sigma^2 + \tau^2)]^{-m/2} e^{-\frac{1}{2(\sigma^2 + \tau^2)} \sum_{i=1}^{m} (x_i - \phi)^2}$$

- Hence the MLE of ϕ is clearly $\hat{\phi} = \bar{X}$.
- ▶ The empirical Bayes estimator turns out to be

$$E[\mu_i|\mathbf{x},\hat{\phi}] = \frac{\tau^2}{\sigma^2 + \tau^2}x_i + \frac{\sigma^2}{\sigma^2 + \tau^2}\bar{x}.$$

Example 2(b):

▶ If we have a one-way classification with *m* groups and *n* observations per group, the previous example extends to

$$X_{ij}|\mu_i \overset{\text{indep}}{\sim} N(\mu_i, \sigma^2), \quad i = 1, \dots, m, j = 1, \dots, n$$

 $\mu_i \overset{\text{iid}}{\sim} N(\phi, \tau^2), \quad \sigma^2, \tau^2 \text{ known.}$

▶ Then note that

$$\bar{X}_i \sim N\left(\phi, \frac{\sigma^2}{n} + \tau^2\right)$$

▶ Hence the empirical Bayes estimate of μ_i (i = 1, ..., m) is

$$\hat{\mu}_i = \frac{n\tau^2}{\sigma^2 + n\tau^2} \bar{x}_i + \frac{\sigma^2}{\sigma^2 + n\tau^2} \bar{x}$$

▶ If τ^2 is unknown, note that $\frac{m-3}{\sum (\bar{X}_i - \bar{X})^2}$ is an unbiased estimator of $\frac{1}{\sigma^2 + n\tau^2}$, so we can use

$$\hat{\mu}_{i} = \left[1 - \frac{(m-3)\sigma^{2}}{\sum (\bar{X}_{i} - \bar{X})^{2}}\right] \bar{X}_{i} + \left[\frac{(m-3)\sigma^{2}}{\sum (\bar{X}_{i} - \bar{X})^{2}}\right] \bar{X}_{i}$$

as the empirical Bayes estimator.

▶ On the other hand, if σ^2 is unknown, we can use

$$\hat{\mu}_{i} = \left[\frac{(m-3)n\tau^{2}}{\sum (\bar{X}_{i} - \bar{X})^{2}} \right] \bar{X}_{i} + \left[1 - \frac{(m-3)n\tau^{2}}{\sum (\bar{X}_{i} - \bar{X})^{2}} \right] \bar{X}$$

as the empirical Bayes estimator.

Empirical Bayes vs./ Hierarchical Bayes Estimation

- Hierarchical Bayes (HB) and Empirical Bayes (EB) estimators both typically involve shrinkage.
- Some Bayesians feel EB is "less honest" since EB plugs in estimates of the hyperparameters without accounting for the variability associated with the estimate.
- ▶ HB places a **distribution** on the hyperparameters, and thus models the **uncertainty** in the hyperparameter values.
- See HB/EB Comparison for the Italian Marriage Data example on course web page.