In Chapter 6(a), we studied a Poisson regression model, a type of model for count data.

We now examine the **probit regression model**, which we apply to:

1. Binary (2-category) responses, and
2. Multi-category ordinal responses
Example 1: Consider the response variable $Y \in \{1, 2, 3, 4, 5\}$ that indicates the highest educational degree an individual has obtained.

- The categories for Y correspond to: No degree; High school; Associate’s; Bachelor’s; Graduate degree.

- In a regression model, we consider the explanatory variables:

 $X_1 =$ number of children the individual has

 $X_2 = \begin{cases}
 1 & \text{if either parent of individual has obtained college degree} \\
 0 & \text{otherwise}
 \end{cases}$

 $X_3 = X_1 X_2$ (interaction variable)
Example: Ordinal Probit Regression

- Using a normal regression model for Y is inappropriate because:
 1. the normal error assumption will be severely violated
 2. the labels $\{1, 2, 3, 4, 5\}$ imply an “equal spacing” between types of degree that may not exist in reality.

- We assume in **probit regression** that the underlying, say, educational achievement of a person is some unobserved continuous variable Z.

- What we observe is the ordinal, categorized version, denoted Y.
Example: Ordinal Probit Regression

Our model is thus:

\[Y_i = g(Z_i), \quad i = 1, \ldots, n \]
\[Z_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \epsilon_i \]
\[\epsilon_1, \ldots, \epsilon_n \text{ iid } \sim N(0, 1) \]

The unknown parameters are: \(\beta = (\beta_0, \beta_1, \beta_2, \beta_3) \) and the nondecreasing function \(g(\cdot) \), which relates the latent variable \(Z \) to the observed variable \(Y \).

Note \(g(\cdot) \) can capture the location and scale of the distribution of the \(Y_i \)'s, so we may let \(\text{var}(\epsilon_i) = 1 \) and let the intercept \(\beta_0 = 0 \).
Since Y takes on $K = 5$ ordered values, define $K - 1$ “thresholds” g_1, g_2, g_3, g_4 that cut the range of Z into 5 categories:

$$y = g(z) = \begin{cases}
1 & \text{if } -\infty < z < g_1 \\
2 & \text{if } g_1 \leq z < g_2 \\
3 & \text{if } g_2 \leq z < g_3 \\
4 & \text{if } g_3 \leq z < g_4 \\
5 & \text{if } g_4 \leq z < \infty
\end{cases}$$

We will use the Gibbs sampler to approximate the joint posterior of $\{\beta, g_1, g_2, g_3, g_4, Z\}$.
The full conditional of β depends only on Z:

$$\pi(\beta|y, z, g) = \pi(\beta|z)$$

If we choose a multivariate normal prior

$$\beta \sim MVN(0, n(X'X)^{-1})$$

then the full conditional is:

$$\beta|z \sim MVN\left[\frac{n}{n+1}(X'X)^{-1}X'z, \frac{n}{n+1}(X'X)^{-1} \right].$$
We know $Z_i \mid \beta \sim N(\beta' x_i, 1)$.

Given g and $Y_i = y_i$, then $Z_i \in [g_{y_i - 1}, g_{y_i})$. Hence

$$\pi(z_i \mid \beta, y, g) \propto N(\beta' x_i, 1) \times I[a \leq z_i < b]$$

(a constrained normal distribution), where $a = g_{y_i - 1}, b = g_{y_i}$.

This can be sampled from fairly easily in \mathbb{R}.

Given \(y \) and \(z \), we know \(g_k \) must be between
\[
\begin{align*}
a_k &= \max\{z_i : y_i = k\} \quad \text{and} \\b_k &= \min\{z_i : y_i = k + 1\}.
\end{align*}
\]
We can choose constrained normal priors on the \(g_k \)'s so that the full conditional of \(g_k \) is \(N(\mu_k, \sigma_k^2) \) constrained to the interval \([a_k, b_k) \).
Example 1: Educational achievement data on 959 working males.

Let’s use the priors: \(\beta \sim MVN(0, n(X'X)^{-1}) \) and

\[
p(g) \propto \prod_{k=1}^{4} \text{dnorm}(g_k, 0, 100)
\]

constrained so that \(g_1 < g_2 < g_3 < g_4 \).

R example on course web page: Posterior inference is made on \(\beta_1, \beta_2, \beta_3 \).

See plot of generated \(z_1, \ldots, z_{959} \) against the number of children for individuals 1, \ldots, 959.

Different slopes for \(X_2 = 0 \) and \(X_2 = 1 \).
Note that if Y is binary (two-category), the same model could hold, with $K = 2$.

So we have only one threshold g_1 separating the two categories.

Example 2 (54 elderly patients): Let

$$Y_i = \begin{cases}
1 & \text{if senility is not present in individual } i \\
2 & \text{if senility is present in individual } i
\end{cases}$$

Explanatory variable $X =$ score on subset of WAIS intelligence test.

See R example on course web page.