Simple values like the posterior mean $E[\theta|X]$ and posterior variance $\text{var}[\theta|X]$ can be useful in learning about θ.

Quantiles of $\pi(\theta|X)$ (especially the posterior median) can also be a useful summary of θ.

The ideal summary of θ is an interval (or region) with a certain probability of containing θ.

Note that a classical (frequentist) confidence interval does not exactly have this interpretation.
Definitions of Coverage

- **Defn.** A random interval \((L(X), U(X))\) has 100\((1 - \alpha)\)% frequentist coverage for \(\theta\) if, before the data are gathered,

\[
P[L(X) < \theta < U(X)|\theta] = 1 - \alpha.
\]

(*Pre-experimental* \(1 - \alpha\) coverage)

- Note that if we observe \(X = x\) and plug \(x\) into our confidence interval formula,

\[
P[L(x) < \theta < U(x)|\theta] = \begin{cases}
0 & \text{if } \theta \notin (L(x), U(x)) \\
1 & \text{if } \theta \in (L(x), U(x))
\end{cases}
\]

(*NOT* Post-experimental \(1 - \alpha\) coverage)
Definitions of Coverage

- **Defn.:** An interval \((L(x), U(x))\), based on the observed data \(X = x\), has 100\((1 - \alpha)\)% **Bayesian coverage** for \(\theta\) if

\[
P[L(x) < \theta < U(x)|X = x] = 1 - \alpha.
\]

(Post-experimental 1 \(- \alpha\) coverage)

- The frequentist interpretation is less desirable if we are performing inference about \(\theta\) based on a **single** interval.
Hartigan (1966) showed that for standard posterior intervals, an interval with $100(1 - \alpha)\%$ **Bayesian coverage** will have

$$P[L(X) < \theta < U(X)|\theta] = (1 - \alpha) + \epsilon_n,$$

where $|\epsilon_n| < a/n$ for some constant a.

\Rightarrow **Frequentist** coverage $\to 1 - \alpha$ as $n \to \infty$.

Note that many classical CI methods only achieve $100(1 - \alpha)\%$ frequentist coverage asymptotically, as well.
Bayesian Credible Intervals

- A **credible interval** (or in general, a **credible set**) is the Bayesian analogue of a confidence interval.
- A $100(1 - \alpha)\%$ credible set C is a subset of Θ such that

$$\int_C \pi(\theta | X) d\theta = 1 - \alpha.$$

- If the parameter space Θ is discrete, a sum replaces the integral.
If θ^*_L is the $\alpha/2$ posterior quantile for θ, and θ^*_U is the $1 - \alpha/2$ posterior quantile for θ, then (θ^*_L, θ^*_U) is a $100(1 - \alpha)$% credible interval for θ.

Note: $P[\theta < \theta^*_L|X] = \alpha/2$ and $P[\theta > \theta^*_U|X] = \alpha/2$.

\[
\Rightarrow P\{\theta \in (\theta^*_L, \theta^*_U)|X\} = 1 - P\{\theta \notin (\theta^*_L, \theta^*_U)|X\} = 1 - \left(P[\theta < \theta^*_L|X] + P[\theta > \theta^*_U|X] \right) = 1 - \alpha.
\]
Quantile-Based Intervals

Picture:
Example: Quantile-Based Interval

- Suppose X_1, \ldots, X_n are the durations of cabinets for a sample of cabinets from Western European countries.
- We assume the X_i’s follow an exponential distribution.

\[
p(X_i | \theta) = \theta e^{-\theta X_i}, \quad X_i > 0
\]

\[
\Rightarrow L(\theta | X) = \theta^n e^{-\theta \sum_{i=1}^{n} x_i}
\]

Suppose our prior distribution for θ is

\[
p(\theta) \propto 1/\theta, \quad \theta > 0.
\]

\[
\Rightarrow \text{Larger values of } \theta \text{ are less likely a priori.}
\]
Then

$$
\pi(\theta|X) \propto p(\theta)L(\theta|X)
$$

$$
\propto \left(\frac{1}{\theta}\right)\theta^n e^{-\theta \sum x_i}
$$

$$
= \theta^{n-1} e^{-\theta \sum x_i}
$$

- This is the kernel of a gamma distribution with “shape” parameter n and “rate” parameter $\sum_{i=1}^{n} x_i$.
- So including the normalizing constant,

$$
\pi(\theta|X) = \frac{(\sum x_i)^n}{\Gamma(n)} \theta^{n-1} e^{-\theta \sum x_i}, \quad \theta > 0.
$$
Now, given the observed data x_1, \ldots, x_n, we can calculate any quantiles of this gamma distribution.

- The 0.05 and 0.95 quantiles will give us a 90% credible interval for θ.

- See R example with real data on course web page.
Example: Quantile-Based Interval

- Suppose we feel $p(\theta) = 1/\theta$ is too subjective and favors small values of θ too much.
- Instead, let’s consider the **noninformative** prior

\[p(\theta) = 1, \quad \theta > 0 \]

(favors all values of θ equally).
- Then our posterior is

\[
\pi(\theta|X) \propto p(\theta)L(\theta|X) \\
= (1)\theta^n e^{-\theta \sum x_i} \\
= \theta^{n+1} e^{-\theta \sum x_i}
\]

⇒ This posterior is a gamma with parameters $(n + 1)$ and $\sum x_i$.
- We can similarly find the equal-tail credible interval.
Example 2: Quantile-Based Interval

- Consider 10 flips of a coin having \(P\{\text{Heads}\} = \theta \).
- Suppose we observe 2 “heads”.
- We model the count of heads as binomial:

\[
p(X|\theta) = \binom{10}{x} \theta^x (1 - \theta)^{10-x}, \quad x = 0, 1, \ldots, 10.
\]

- Let’s use a uniform prior for \(\theta \):

\[
p(\theta) = 1, \quad 0 \leq \theta \leq 1.
\]
Example 2: Quantile-Based Interval

Then the posterior is:

\[\pi(\theta|x) \propto p(\theta)L(\theta|x) \]

\[= (1) \binom{10}{x} \theta^x (1 - \theta)^{10-x} \]

\[\propto \theta^x (1 - \theta)^{10-x}, \quad 0 \leq \theta \leq 1. \]

This is a **beta** distribution for \(\theta \) with parameters \(x + 1 \) and \(10 - x + 1 \).

Since \(x = 2 \) here, \(\pi(\theta|x = 2) \) is beta(3,9).

The 0.025 and 0.975 quantiles of a beta(3,9) are \((.0602, .5178)\), which is a 95% credible interval for \(\theta \).
The equal-tail credible interval approach is ideal when the posterior distribution is symmetric.

But what if $\pi(\theta|x)$ is skewed?

Picture:
Note that values of θ around 2.2 have much higher posterior probability than values around 11.5.

Yet 11.5 is in the equal-tails interval and 2.2 is not!

A better approach here is to create our interval of θ-values having the **Highest Posterior Density**.
Defn: A $100(1 - \alpha)\%$ HPD region for θ is a subset $C \in \Theta$ defined by

$$C = \{ \theta : \pi(\theta|x) \geq k \}$$

where k is the **largest** number such that

$$\int_{\theta : \pi(\theta|x) \geq k} \pi(\theta|x) \, d\theta = 1 - \alpha.$$

- The value k can be thought of as a horizontal line placed over the posterior density whose intersection(s) with the posterior define regions with probability $1 - \alpha$.
HPD Intervals / Regions

Picture: (95% HPD Interval)

\[P\{\theta_L^* < \theta < \theta_U^*\} = 0.95. \]

The values between \(\theta_L^* \) and \(\theta_U^* \) here have the highest posterior density.