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STAT 535 — Intro to Bayesian Data Analysis
Test 1 — Spring 2024

1. Fill in the blanks: Bayesian posterior inference is based on a combination of £y 1’9 I
information and ld‘ /S v f{‘ € information. |
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2. A quality control employees at a citrus packing plant wishes to estimate the mean number of
blemishes per orange for a population of oranges to be shipped. She will take a random sample of
five oranges and count the blemishes on each. Assume the five counts Y1,..., Y5 can be modeled as
iid Poisson random variables with unknown mean parameter A, which the employee believes to be
around 3. The standard deviation of her prior is judged to be around V1.5 = 1.22.

(a) Given the prior knowledge, what would be a reasonable choice of a prior distribution for A?
Include hyperparameter values. Explain your choice. ‘TL o j 4m . 5 + L e
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(b) Based on your prior dlstrlbutmn and the data model here, state the form of the posterior
distribution for A, including expressions for the parameter values. (Just state it, no need to derive

it.)
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(¢) If we observe sample values of 4, 0, 3, 3, 1, then write the posterior distribution for A, specifying

actual numerical parameter values. Z \g ; — \ '5
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(d) If possible, give a Bayesian point estimate for A using your posterior you found in (c).
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3. Suppose we have iid observations Y1,...,Y, that follow a distribution with pdf:
F(y18) = 26y~

where y > 0 and the unknown parameter is 8 > 0.

(a) Suppose you choose as a prior distribution for § a gamma(s, ) distribution. Briefly explain why
the gamma is a reasonable choice as a prior here.
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(b) Write (and simplify as much as possible) the likelihood function L(8|y1, ..., ¥n)-
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(c) Based on your prior distribution and the likelihood here, derive the form of posterior distribution
for 6, including formulas for the posterior parameters.
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’Edd)_ Give a general formula for the posterior mean here, based on your answer to (c).
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(e) If we choose a gamma(s = 3,r = 15) prior for # and we observe a sample of n = 3 values
which are 1.2, 4, and 2.5, then write the posterior distribution for 8, specifying actual numerical

parameter values. V1 = 3 | ii:l, — l‘ZZ+L+7—+ 2_‘5?': 2367
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(f) Based on what you know about the form of the posterior distribution here, give a Bayesian point
estimate for # using your posterior, using the specific prior and data in (e). Your answer should be

an actual number. Show work.
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(g) Note that, for n = 3 observations, the MLE of # is

P 3
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Briefly discuss how the posterior mean compares numerically to the prior mean and the MLE for

this data set. ‘7‘“{9( neav = X o.2
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(h) Write the general formula for the posterior mean as a weighted average of the MLE and the

prior mean.
n+s v = 4 X 6L
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4. A college st 1dent was planmng to make point-spread bets on the NFL playoff games and wanted to
do a Bayesian data analysis of his performance. In particular, he was interested in doing inference
about his probability of winning a bet on a randomly chosen NFL playoff game.

(a) He chose a Beta(3,2) prior for his probability of winning a bet. Based on this, before collecting
the data, what is his best guess for his probability of winning a bet?
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(b) He bet on the 13 NFL playoff games and he won 5 of those bets. What is the posterior
distribution for his probability of winning a bet? (Just state the distribution, including parameter
values; you don’t have to derive it mathematically).
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(¢) Using your answer to part (b), what is a point estimate for his probability of winning a bet?
Indicate how you got your answer.

3+10 | B

(d) Recall that the variance of a Beta(c, ) random variable is

op

(a+B)*(a+8+1)
tence best reflects how the student’s prior beliefs have been updated into the posterior information?

. Which sen-

(A) After seeing the data, he has become more optimistic about his chance to win a bet, and
he has become more certain about his belief.
(B) After seeing the data, he has become more optimistic about his chance to win a bet, and he
has become less certain about his belief.

After seeing the data, he has become less optimistic about his chance to win a bet, and he has
5ecome more certain about his belief.
(D) After seeing the data, he has become less optimistic about his chance to win a bet, and he has
become less certain about his belief.

. Suppose 15 percent of all people in the population lack health insurance. Among people who lack
health insurance, 5 percent of them are senior citizens. Also note that senior citizens make up 17
percent of the population.

(a) What is the probability that a randomly selected person is a senior citizen, given that the person
does NOT lack health insurance? Show work. S =genor Q‘-th L= [QCL: S

= P(s|Le) = @G o |po.1412
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(b) If a randomly selected person in the population is a senior citizen, then use Bayes’ Rule to find
the probability that the person lacks health insurance. Show work.
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6. Consider the posterior distribution (for some parameter #) pictured in the plot in Figure 1 at the
end of the exam.
If the 95% (equal-tail) quantile-based credible interval for 8 here is (ég, 98), and the the 95% HPD
credible interval for § here is (éf , é{}' ), then which of the following can we conclude? (Feel free to
draw on the plot to illustrate your reasoning.)

()83 < 0ff ana 63 < 8 (B) 09 < 0F and 49 > 8

(0) ég > 0 and ég < 0 (D) ég > 08 and ég > 6

7. A survey in 1997 obtained lead concentration levels (in mg/kg) at 37 sampled stations in Kenya.
Some R output giving the results of the analysis is given in Appendix 1 at the end of the exam.

a) Briefly explain why the prior distribution for o2 in this problem is called a conjugate prior.
gaie p

The FV“\QT 'S Taverse qumma A +£\Q— osterier
bs al\so \‘\{wmﬁ qamma Ltk with dilfereat paramerer
ValuesS.

(b) Note that the prior for y was:
plo? ~ N (6,02 /s0)

Refer to the R code and the form of the posterior for p. Comment on exactly how our prior
knowledge about p has been altered by observing the sample data, specifically referencing relevant

numbers in the R code and output.
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(c) What do the two given point estimates for o indicate about the symmetry/skewness of its
posterior distribution?
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(d) What do the two given point estimates for p indicate about the symmetry/skewness of its
posterior distribution?
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(e) Carefully interpret, in the context of the variable in the problem, what the given 95% credible
interval for u tells you about the mean lead concentration level in Kenya. \
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Appendix 1

lead <- c(48,53,44,55,52,39,62,38,23,27,41,37,41,46,32,17,
32,41,23,12,3,13,10,11,5,30,11,9,7,11,77,210,38,112,52,10,6)

>

+

>

>y <= lead
>

> ybar <- mean(y); n <~ length(y)
>
>

ybar
[1] 37.24324
>n
[11 37
> sum(y~2)
[1] 100936
>
> # prior parameters:
>
> my.alpha <- 12; my.beta <- 110
>
> my.delta <- 30; sO <- 1
>
> library(pscl) # loading pscl package
>
> ### Point estimates:
>
> p.mean.sig.sq <- (my.beta + 0.5%(sum(y~2) - n*(ybar"2)) ) / (my.alpha + n/2 - 0.5 - 1)
>
> p.median.sig.sq <- qigamma(0.50, my.alpha + n/2 - 0.5, my.beta + 0.5%( sum(y~2) - n*(ybar~2) ) )
>
> print(paste("posterior.mean for sigma"2=", round(p.mean.sig.sq,3),
+ "posterior.median for sigma”2=", round(p.median.sig.sq,3) ))
[1] "posterior.mean for sigma~2= 859.221 posterior.median for sigma~2= 839.894"
>
> p.mean.mu <~ {((sum(y)+my.delta*s0)/(n+s0))
>

> p.median.mu <- gqnorm(0.50, mean=({sum(y)+my.delta*s0)/(n+s0)), sd=sqrt(p.median.sig.sq/(n+s0)) )
>
> print(paste("posterior.mean for mu=", round(p.mean.mu,3},

+ "posterior.median for mu=", round(p.median.mu,3) })

[1] "posterior.mean for mu= 37.053 posterior.median for mu= 37.053"
>

> #i## Marginal Interval estimates:

>

> hpd.95.sig.sq <~ hpd(gigamma, alpha=my.alpha + n/2 - 0.5, beta=my.beta + 0.5*( sum(y~2) - nx(ybar~2) ) )
>

> round(hpd.95.sig.sq, 3)

[1] 570.083 1184.742

>

> hpd.95.mu <- hpd(gnorm, mean={(sum(y)+my.delta*s0)/(n+s0)), sd=sqrt(p.median.sig.sq/(n+s0)) )

>

> round(hpd.95.mu, 3)

[1] 27.838 46.267

>
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Figure 1: Posterior distribution for a parameter 6.



