
STAT 509 CLT SIMULATION EXERCISE

In this handout, we describe the use of Monte Carlo simulation to illustrate how the Central
Limit Theorem (CLT) works. Recall what the CLT says:

Result 2: Suppose that Y1, Y2, ..., Yn is a random sample from a population distribution with
mean µ and variance σ2 (not necessarily a normal distribution). When the sample size n is
large, the sample mean

Y ∼ AN
(
µ,
σ2

n

)
.

The symbol AN is read “approximately normal.”

To fix our ideas, suppose we consider Example 6.3, where the death time Y (in days) was
modeled using

Y ∼ exponential(λ = 1/5).

This is the population distribution. It describes the time to death for all individual rats in the
population.
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Consider observing a random sample of n = 10 rats and their death times:

Y1, Y2, ..., Y10 −→ calculate Y

R can automate this process:

n = 10 # sample size

lambda = 1/5 # exponential parameter

exp.data = rexp(n,lambda) # simulate exponential random sample

mean(exp.data) # calculate sample mean
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We can repeat this process a large number of times

Sample 1: Y1, Y2, ..., Y10 −→ calculate Y

Sample 2: Y1, Y2, ..., Y10 −→ calculate Y

Sample 3: Y1, Y2, ..., Y10 −→ calculate Y
...

Sample B: Y1, Y2, ..., Y10 −→ calculate Y

and then look at the empirical distribution formed by plotting all of the sample means in a
histogram.

Here is what I got with B = 10000; i.e., simulate 10,000 random samples, each of size n = 10:
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The smooth curve is the normal probability density function calculated at the overall mean and
the standard deviation (of the B = 10000 sample means).

Interpretation:

• The histogram offers an empirical look at the sampling distribution of Y , when the sample
size is n = 10 and the population distribution is exponential with λ = 1/5.

• The smooth curve is the normal distribution that most closely agrees with the histogram.

• We can see that the normal approximation to the sampling distribution of Y (when the
sample size n = 10) is not that good.
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Let’s explore what happens when we increase the sample size. I repeated this simulation when
n = 25, n = 50, and n = 100.

Sample mean
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Figure 1: CLT simulation exercise. Sampling distribution of the sample mean Y when the
population distribution is exponential with λ = 1/5. Upper left: n = 10. Upper right: n = 25.
Lower left: n = 50. Lower right: n = 100.

Interpretation:

• As the sample size increases, the normal approximation (smooth curve) to the empirical
distribution of the sample mean Y (histogram) gets better and better.

• This is precisely what the CLT says should happen.

R code for this simulation exercise is on the next page.
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R CODE:

n = 10 # sample size

lambda = 1/5 # exponential parameter

B = 10000 # number of Monte Carlo samples

# Generate B samples of exponential(lambda) data, each of size n

# Rows hold the samples (10000 rows)

exp.data = matrix(rexp(n*B,lambda),nrow=B,ncol=n)

# Calculate sample mean for each row (sample)

sample.mean = apply(exp.data,1,mean)

# Make histogram of 10000 sample means (one calculated from each row)

# This is the Monte Carlo distribution

hist(sample.mean,xlab="Sample mean",prob=TRUE,

xlim=c(min(sample.mean),max(sample.mean)),

ylab="Sampling distribution of the sample mean",

main="",col="lightblue")

# Overlay normal density to assess the approximation

lines(sort(sample.mean),

dnorm(sort(sample.mean),mean(sample.mean),sd(sample.mean)),

col="red",lwd=2)
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