
STAT 511 HW11 SOLUTIONS

5.45. The joint pmf of

Y1 = the number of contracts awarded to firm A

Y2 = the number of contracts awarded to firm B

is shown below, along with the marginal pmfs:

pY1,Y2(y1, y2) y2 = 0 y2 = 1 y2 = 2 pY1(y1)

y1 = 0 1/9 2/9 1/9 4/9
y1 = 1 2/9 2/9 0 4/9
y1 = 2 1/9 0 0 1/9

pY2(y2) 4/9 4/9 1/9

For Y1 and Y2 to be independent, we would need pY1,Y2(y1, y2) = pY1(y1)pY2(y2) to hold for all
(y1, y2) in the support

R = {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (2, 2)}.

However, this condition does not even hold for the first value (0, 0); i.e.,

1

9
= pY1,Y2(0, 0) 6= pY1(0)pY2(0) =

4

9

(
4

9

)
=

16

81
.

Therefore, Y1 and Y2 are not independent.

5.52. We can quickly determine Y1 and Y2 are independent. First note that the support
R = {(y1, y2) : 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1}, shown below, does not involve a constraint between y1
and y2.

y1

y 2

0 1

0
1

Also, we can write
fY1,Y2(y1, y2) = 4y1y2 = 4y1 × y2 = g(y1)h(y2),

where g(y1) = 4y1 and h(y2) = y2. Therefore, Y1 and Y2 are independent.
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Note: The functions g(y1) = 4y1 and h(y2) = y2 are not the marginal pdfs, but they are
proportional to them. For 0 < y1 < 1, the marginal pdf of Y1 is

fY1(y1) =

∫ 1

y2=0
4y1y2 dy2 = 4y1

(
y22
2

)∣∣∣∣1
y2=0

= 2y1.

For 0 < y2 < 1, the marginal pdf of Y2 is

fY2(y2) =

∫ 1

y1=0
4y1y2 dy1 = 4y2

(
y21
2

)∣∣∣∣1
y1=0

= 2y2.

Summarizing,

fY1(y1) =

{
2y1, 0 ≤ y1 ≤ 1

0, otherwise
and fY2(y2) =

{
2y2, 0 ≤ y2 ≤ 1

0, otherwise.

Each marginal pdf matches that of a beta distribution with α = 2 and β = 1; note that

Γ(3)

Γ(2)Γ(1)
= 2! = 2.

In other words, marginally, both Y1 and Y2 have a beta distribution with α = 2 and β = 1.

5.60. The support R = {(y1, y2) : 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1}, shown below, does not involve a
constraint between y1 and y2.

y1

y 2

0 1

0
1

However, we cannot write

fY1,Y2(y1, y2) = y1 + y2 = g(y1)h(y2)

for nonnegative functions g(y1) and h(y2). Therefore, Y1 and Y2 are not independent. For fun,
let’s derive the marginal pdfs and check that indeed

fY1,Y2(y1, y2) 6= fY1(y1)fY2(y2).
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For 0 < y1 < 1, the marginal pdf of Y1 is

fY1(y1) =

∫ 1

y2=0
(y1 + y2) dy2 =

(
y1y2 +

y22
2

)∣∣∣∣1
y2=0

= y1 +
1

2
.

For 0 < y2 < 1, the marginal pdf of Y2 is

fY2(y2) =

∫ 1

y1=0
(y1 + y2) dy1 =

(
y21
2

+ y1y2

)∣∣∣∣1
y1=0

= y2 +
1

2
.

Summarizing,

fY1(y1) =

 y1 +
1

2
, 0 ≤ y1 ≤ 1

0, otherwise
and fY2(y2) =

 y2 +
1

2
, 0 ≤ y2 ≤ 1

0, otherwise.

Clearly,

y1 + y2 = fY1,Y2(y1, y2) 6= fY1(y1)fY2(y2) =

(
y1 +

1

2

)(
y2 +

1

2

)
.

Therefore, Y1 and Y2 are not independent.

5.65. First, note the support of Y1 and Y2 is R = {(y1, y2) : y1 ≥ 0, y2 ≥ 0}, the entire first
quadrant. This set is shown below:

y1

y 2

0

0

Note that the joint pdf fY1,Y2(y1, y2) is a three-dimensional function which takes the value
[1 − α{(1 − 2e−y1)(1 − 2e−y2)}]e−y1−y2 over this region (i.e., the entire first quadrant) and is
otherwise equal to zero.

(a) To find the marginal pdf of Y1, we integrate the joint pdf fY1,Y2(y1, y2) over y2. For y1 ≥ 0,
this marginal pdf is given by

fY1(y1) =

∫ ∞
y2=0

[1− α{(1− 2e−y1)(1− 2e−y2)}]e−y1−y2 dy2.
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Let’s simplify the integrand algebraically:

[1− α{(1− 2e−y1)(1− 2e−y2)}]e−y1−y2

= [1− α(1− 2e−y1 − 2e−y2 + 4e−y1−y2)]e−y1−y2

= e−y1−y2 − αe−y1−y2(1− 2e−y1 − 2e−y2 + 4e−y1−y2)

= e−y1−y2 − αe−y1−y2 + 2αe−y1e−y1−y2 + 2αe−y2e−y1−y2 − 4αe−y1−y2e−y1−y2

= (1− α)e−y1−y2 + 2αe−2y1−y2 + 2αe−y1−2y2 − 4αe−2y1−2y2 .

Therefore,

fY1(y1) =

∫ ∞
y2=0

[(1− α)e−y1−y2 + 2αe−2y1−y2 + 2αe−y1−2y2 − 4αe−2y1−2y2 ] dy2

= (1− α)

∫ ∞
y2=0

e−y1−y2dy2 + 2α

∫ ∞
y2=0

e−2y1−y2dy2 + 2α

∫ ∞
y2=0

e−y1−2y2dy2

− 4α

∫ ∞
y2=0

e−2y1−2y2dy2.

Let’s do these integrals in sequence. First,∫ ∞
y2=0

e−y1−y2dy2 = e−y1
∫ ∞
y2=0

e−y2dy2︸ ︷︷ ︸
=1

= e−y1 .

Second, ∫ ∞
y2=0

e−2y1−y2dy2 = e−2y1
∫ ∞
y2=0

e−y2dy2︸ ︷︷ ︸
=1

= e−2y1 .

Third, ∫ ∞
y2=0

e−y1−2y2dy2 = e−y1
∫ ∞
y2=0

e−2y2dy2︸ ︷︷ ︸
=1/2

=
1

2
e−y1 .

Fourth, ∫ ∞
y2=0

e−2y1−2y2dy2 = e−2y1
∫ ∞
y2=0

e−2y2dy2︸ ︷︷ ︸
=1/2

=
1

2
e−2y1 .

Therefore, for y1 ≥ 0,

fY1(y1) = (1− α)e−y1 + 2αe−2y1 + 2α

(
1

2

)
e−y1 − 4α

(
1

2

)
e−2y1

= e−y1 − αe−y1 + 2αe−2y1 + αe−y1 − 2αe−2y1

= e−y1 .

We recognize this as an exponential pdf with mean β = 1; i.e., Y1 ∼ exponential(1).

(b) An analogous argument will show Y2 ∼ exponential(1). I know this because fY1,Y2(y1, y2)
is a symmetric function of y1 and y2; i.e., fY1,Y2(y1, y2) = fY1,Y2(y2, y1) and the integral to
calculate the marginal pdf of Y2 is also over (0,∞).
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(c) Suppose α = 0. Then, the joint pdf of Y1 and Y2 collapses to

fY1,Y2(y1, y2) =

{
e−y1−y2 , y1 ≥ 0, y2 ≥ 0

0, otherwise.

Note that
e−y1−y2 = fY1,Y2(y1, y2) = fY1(y1)fY2(y2) = e−y1e−y2 .

Therefore, Y1 and Y2 are independent. Now suppose Y1 and Y2 are independent. If this is true,
then there exist functions g(y1) and h(y2) such that

fY1,Y2(y1, y2) = g(y1)h(y2).

This must be true because the support of Y1 and Y2 does not involve a constraint. Therefore,
the joint pdf

[1− α{(1− 2e−y1)(1− 2e−y2)}]e−y1−y2 = g(y1)h(y2),

for some functions g(y1) and h(y2). The only way fY1,Y2(y1, y2) will factor like this is if α = 0.

Remark: That Y1 ∼ exponential(1) and Y2 ∼ exponential(1) hold for any value of α ∈ [−1, 1]
is a key feature of this joint pdf. Y1 and Y2 will be independent (and hence uncorrelated) if and
only if α = 0. We can induce correlation between Y1 and Y2 by taking α 6= 0 and this will not
affect the marginal distributions. Interesting!

5.77. The support is R = {(y1, y2) : 0 ≤ y1 ≤ y2 ≤ 1}, the upper triangle of the unit square.
See below:

y1

y 2

0 1

0
1

The joint pdf fY1,Y2(y1, y2) is a three-dimensional function which takes the value 6(1− y2) over
this region and is otherwise equal to zero.

Note: We are being asked to get the marginal means and marginal variances in parts (a)
and (b), respectively. Therefore, let’s get the marginal distributions first. If these marginal
distributions are “named,” we might be able to get the means and variances quickly (i.e., by
using formulas we have already derived in class).
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For 0 < y1 < 1, the marginal pdf of Y1 is

fY1(y1) =

∫ 1

y2=y1

6(1− y2) dy2 = 6

(
y2 −

y22
2

)∣∣∣∣1
y2=y1

= 6

[(
1− 1

2

)
−
(
y1 −

y21
2

)]
= 6

(
1

2
− y1 +

y21
2

)
= 3

(
1− 2y1 + y21

)
= 3(1− y1)2.

For 0 < y2 < 1, the marginal pdf of Y2 is

fY2(y2) =

∫ y2

y1=0
6(1− y2) dy1 = 6(1− y2)

∫ y2

y1=0
dy1 = 6y2(1− y2).

Summarizing,

fY1(y1) =

{
3(1− y1)2, 0 ≤ y1 ≤ 1

0, otherwise
and fY2(y2) =

{
6y2(1− y2), 0 ≤ y2 ≤ 1

0, otherwise.

Note that

Y1 ∼ beta(1, 3)

Y2 ∼ beta(2, 2).

We know the mean and variance for a beta distribution, so now parts (a) and (b) are easy:

(a)

E(Y1) =
1

1 + 3
=

1

4
and E(Y2) =

2

2 + 2
=

1

2
.

(b)

V (Y1) =
1(3)

(1 + 3)2(1 + 3 + 1)
=

3

80
and V (Y2) =

2(2)

(2 + 2)2(2 + 2 + 1)
=

4

80
.

(c) Note that

E(Y1 − 3Y2) = E(Y1)− 3E(Y2) =
1

4
− 3

(
1

2

)
= −5

4
.

Note: If you didn’t derive the marginals first, you could still do this problem, but you would
have to do more integration. We can calculate

E(Y1) =

∫ 1

y1=0

∫ 1

y2=y1

y1 6(1− y2) dy2dy1

E(Y 2
1 ) =

∫ 1

y1=0

∫ 1

y2=y1

y21 6(1− y2) dy2dy1

and get V (Y1) using the variance computing formula. Similarly for E(Y2) and V (Y2). You
could calculate E(Y1 − 3Y2) by

E(Y1 − 3Y2) =

∫ 1

y1=0

∫ 1

y2=y1

(y1 − 3y2) 6(1− y2) dy2dy1.
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5.82. The support is R = {(y1, y2) : 0 ≤ y2 ≤ y1 ≤ 1}, the lower triangle of the unit square.
See below:

y1

y 2

0 1

0
1

The joint pdf fY1,Y2(y1, y2) is a three-dimensional function which takes the value 1/y1 over this
region and is otherwise equal to zero. I think it is probably easiest to calculate E(Y1 − Y2)
directly; i.e.,

E(Y1 − Y2) =

∫ ∫
R2

(y1 − y2)fY1,Y2(y1, y2) dy1dy2

=

∫ 1

y2=0

∫ 1

y1=y2

(y1 − y2)
1

y1
dy1dy2

=

∫ 1

y2=0

∫ 1

y1=y2

(
1− y2

y1

)
dy1dy2

=

∫ 1

y2=0

[
(y1 − y2 ln y1)

∣∣∣1
y1=y2

]
dy2

=

∫ 1

y2=0
(1− y2 + y2 ln y2) dy2 =

∫ 1

y2=0
(1− y2) dy2 +

∫ 1

y2=0
y2 ln y2 dy2.

The first integral is easy; using the beta function result,∫ 1

y2=0
(1− y2) dy2 =

Γ(1)Γ(2)

Γ(3)
=

1

2
.

I did the second integral by parts with

u = ln y2 du =
1

y2
dy2

dv = y2 v =
y22
2

which gives ∫ 1

y2=0
y2 ln y2 dy2 =

y22 ln y2
2

∣∣∣∣1
0︸ ︷︷ ︸

= 0

−
∫ 1

y2=0

y2
2
dy2 = −1

2

(
y22
2

∣∣∣∣1
0

)
= −1

4
.
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Therefore,

E(Y1 − Y2) =
1

2
− 1

4
=

1

4
.

Note: I used R to check my work doing the integral∫ 1

y2=0
(1− y2 + y2 ln y2) dy2

on the preceding page:

> integrand = function(x) 1-x+x*log(x)

> integrate(integrand,lower=0,upper=1)

0.2499999 with absolute error < 0.00011

5.86. This problem is useful in deriving properties of the t and F distributions (which are
ubiquitous in statistical inference). We are given Z ∼ N (0, 1),

Y1 ∼ χ2(ν1)
d
= gamma

(ν1
2
, 2
)

Y2 ∼ χ2(ν2)
d
= gamma

(ν2
2
, 2
)
,

and Z, Y1, and Y2 are mutually independent. I used the notation “
d
=” which is read “is the

same distribution as.” Recall that χ2 distributions are special gamma distributions.

(a) With

W =
Z√
Y1
,

we want to derive E(W ) and V (W ). Because Z and Y1 are independent, we can write

E(W ) = E

(
Z√
Y1

)
= E

(
Z

1√
Y1

)
Z⊥⊥Y1= E(Z)E

(
1√
Y1

)
= 0× E

(
1√
Y1

)
= 0,

provided that

E

(
1√
Y1

)
<∞;

i.e., this expectation exists. Note that if this expectation does not exist, then we have to deal
with a “0×∞” situation, which may not be well defined mathematically.

Note that because Y1 ∼ gamma(ν1/2, 2), we can calculate E( 1√
Y1

) directly. We have

E

(
1√
Y1

)
=

∫ ∞
0

1
√
y1

1

Γ(ν12 )2
ν1
2

y
ν1
2
−1

1 e−y1/2︸ ︷︷ ︸
gamma( ν1

2
,2) pdf

dy1

=
1

Γ(ν12 )2
ν1
2

∫ ∞
0

y

(
ν1−1

2

)
−1

1 e−y1/2︸ ︷︷ ︸
gamma

(
ν1−1

2
,2
)
kernel

dy1 =
1

Γ(ν12 )2
ν1
2

× Γ

(
ν1 − 1

2

)
2

ν1−1
2 =

Γ
(
ν1−1
2

)
√

2Γ(ν12 )
.
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Note that to claim ∫ ∞
0

y

(
ν1−1

2

)
−1

1 e−y1/2 dy1 = Γ

(
ν1 − 1

2

)
2

ν1−1
2

on the preceding page, we need the exponent

ν1 − 1

2
> 0 ⇐⇒ ν1 > 1.

Otherwise, the integral above diverges and E( 1√
Y1

) does not exist. Therefore,

E(W ) = E(Z)E

(
1√
Y1

)
= 0×

Γ
(
ν1−1
2

)
√

2Γ(ν12 )
= 0,

provided that ν1 > 1. Note also that the gamma function Γ(·) is also defined only for positive
arguments, so we can see how the “ν1 > 1” condition is needed in this way.

Now to calculate V (W ), we use the variance computing formula. Note that

V (W ) = E(W 2)− [E(W )]2 = E(W 2),

because E(W ) = 0. Therefore, we just need to find the second moment of W . With

W =
Z√
Y1
,

we have

V (W ) = E(W 2) = E

(
Z2

Y1

)
= E

(
Z2 1

Y1

)
Z⊥⊥Y1= E(Z2)E

(
1

Y1

)
= 1× E

(
1

Y1

)
= E

(
1

Y1

)
.

Note that because Z ∼ N (0, 1), E(Z) = 0 and therefore

1 = V (Z) = E(Z2)− [E(Z)]2 = E(Z2).

Therefore, all we have to do is calculate the first inverse moment E( 1
Y1

). Again, because

Y1 ∼ gamma(ν1/2, 2), we can calculate E( 1
Y1

) directly.

E

(
1

Y1

)
=

∫ ∞
0

1

y1

1

Γ(ν12 )2
ν1
2

y
ν1
2
−1

1 e−y1/2︸ ︷︷ ︸
gamma( ν1

2
,2) pdf

dy1

=
1

Γ(ν12 )2
ν1
2

∫ ∞
0

y

(
ν1−2

2

)
−1

1 e−y1/2︸ ︷︷ ︸
gamma

(
ν1−2

2
,2
)
kernel

dy1 =
1

Γ(ν12 )2
ν1
2

× Γ

(
ν1 − 2

2

)
2

ν1−2
2 =

Γ
(
ν1−2
2

)
2Γ(ν12 )

.

Analogously to the previous calculation, we need

ν1 − 2

2
> 0 ⇐⇒ ν1 > 2.

Otherwise, the integral above diverges and E( 1
Y1

) does not exist. We have shown

V (W ) = E

(
1

Y1

)
=

Γ
(
ν1−2
2

)
2Γ(ν12 )

=
Γ
(
ν1
2 − 1

)
2Γ(ν12 )

=
Γ
(
ν1
2 − 1

)
2
(
ν1
2 − 1

)
Γ(ν12 − 1)

=
1

2
(
ν1
2 − 1

) =
1

ν1 − 2
.
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(b) With

U =
Y1
Y2
,

we want to derive E(U) and V (U). Because Y1 and Y2 are independent, we can write

E(U) = E

(
Y1
Y2

)
= E

(
Y1

1

Y2

)
Y1⊥⊥Y2= E(Y1)E

(
1

Y2

)
.

We know E(Y1) = ν1, the degrees of freedom for Y1 ∼ χ2(ν1). Therefore, all we have to do is
calculate the first inverse moment E( 1

Y2
). We basically already did this in part (a) when we

calculated E( 1
Y1

). The same argument applies and we get the analogous result; i.e.,

E

(
1

Y2

)
=

Γ
(
ν2−2
2

)
2Γ(ν22 )

=
1

ν2 − 2
.

Therefore, provided ν2 > 2,

E(U) =
ν1

ν2 − 2
.

Now to calculate V (U), we use the variance computing formula. Note that

V (U) = E(U2)− [E(U)]2 = E(U2)−
(

ν1
ν2 − 2

)2

.

Let’s get the second moment of U . With

U =
Y1
Y2
,

we have

E(U2) = E

(
Y 2
1

Y 2
2

)
= E

(
Y 2
1

1

Y 2
2

)
Y1⊥⊥Y2= E(Y 2

1 )E

(
1

Y 2
2

)
.

We can use the variance computing formula to get E(Y 2
1 ). Note that

2ν1 = V (Y1) = E(Y 2
1 )− [E(Y1)]

2 = E(Y 2
1 )− ν21 =⇒ E(Y 2

1 ) = 2ν1 + ν21 = ν1(2 + ν1).

Therefore, all we have to do is calculate the second inverse moment E( 1
Y 2
2

). Because Y2 ∼
gamma(ν2/2, 2), we can calculate E( 1

Y 2
2

) directly.

E

(
1

Y 2
2

)
=

∫ ∞
0

1

y22

1

Γ(ν22 )2
ν2
2

y
ν2
2
−1

1 e−y2/2︸ ︷︷ ︸
gamma( ν2

2
,2) pdf

dy2

=
1

Γ(ν22 )2
ν2
2

∫ ∞
0

y

(
ν2−4

2

)
−1

2 e−y2/2︸ ︷︷ ︸
gamma

(
ν2−4

2
,2
)
kernel

dy2 =
1

Γ(ν22 )2
ν2
2

× Γ

(
ν2 − 4

2

)
2

ν2−4
2 =

Γ
(
ν2−4
2

)
4Γ(ν22 )

.

Therefore, for ν2 > 4,

E(U2) = E(Y 2
1 )E

(
1

Y 2
2

)
=
ν1(2 + ν1)Γ

(
ν2−4
2

)
4Γ(ν22 )

=
ν1(2 + ν1)Γ

(
ν2
2 − 2

)
4Γ(ν22 )

=
ν1(2 + ν1)

4
(
ν2
2 − 1

) (
ν2
2 − 2

) =
ν1(2 + ν1)

(ν2 − 2)(ν2 − 4)
.
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Finally, provided ν2 > 4,

V (U) = E(U2)−
(

ν1
ν2 − 2

)2

=
ν1(2 + ν1)

(ν2 − 2)(ν2 − 4)
−
(

ν1
ν2 − 2

)2

.

This probably simplifies, but I am too tired to try.

5.92. This is the same pdf we examined in Problem 5.77. Recall that we already calculated

E(Y1) =
1

4
and E(Y2) =

1

2
.

Therefore, to find Cov(Y1, Y2), we only have to find E(Y1Y2) and then use the covariance
computing formula

Cov(Y1, Y2) = E(Y1Y2)− E(Y1)E(Y2).

A picture of the support of Y1 and Y2 is given in the solutions to Problem 5.77. We have

E(Y1Y2) =

∫ 1

y1=0

∫ 1

y2=y1

y1y2 6(1− y2) dy2dy1 =

∫ 1

y1=0

∫ 1

y2=y1

6y1y2(1− y2) dy2dy1 = 0.15.

I did this double integral numerically in R using the integral2 function in the pracma package:

> library(pracma)

> integrand <- function(y1,y2) 6*y1*y2*(1-y2)

> y2min <- function(y1) y1

> integral2(integrand,0,1,y2min,1)

$‘Q‘

[1] 0.15

$error

[1] 1.387779e-17

To get this “by hand,” note that the last double integral equals∫ 1

y1=0
6y1

[∫ 1

y2=y1

(y2 − y22) dy2

]
dy1 =

∫ 1

y1=0
6y1

(
y22
2
− y32

3

)∣∣∣∣1
y2=y1

dy1

=

∫ 1

y1=0
6y1

(
1

6
− y21

2
+
y31
3

)
dy1

=

∫ 1

y1=0

(
y1 − 3y31 + 2y41

)
dy1

=

(
y21
2
− 3y41

4
+

2y51
5

)∣∣∣∣1
y1=0

=
1

2
− 3

4
+

2

5
= 0.15.

Therefore, the covariance of Y1 and Y2 is

Cov(Y1, Y2) = E(Y1Y2)− E(Y1)E(Y2) = 0.15−
(

1

4

)(
1

2

)
= 0.025,

which indicates a positive linear relationship between Y1 and Y2. Because Cov(Y1, Y2) 6= 0, we
know that Y1 and Y2 are not independent (i.e., they are dependent). We could have also quickly
concluded this from the triangular support of Y1 and Y2.
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y1

y 2

0 1

0
1

5.107. The support R = {(y1, y2) : 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1, y1 + y2 ≤ 1} is the triangular region
in the picture above. Note that the upper boundary of this support is

y1 + y2 = 1 =⇒ y2 = 1− y1,

a linear function of y1 with slope −1 and intercept 1. The joint pdf fY1,Y2(y1, y2) is a three-
dimensional function which takes the value 2 over this region and is otherwise equal to zero. In
other words, the joint pdf fY1,Y2(y1, y2) is constant (with height 2) over this triangle.

To calculate E(Y1 + Y2), we could work directly with the joint pdf and calculate

E(Y1 + Y2) =

∫ 1

y1=0

∫ 1−y1

y2=0
2(y1 + y2) dy2dy1 =

2

3
.

Alternatively, you could get the marginal pdfs fY1(y1) and fY2(y2), get the marginal means
from those, and then calculate E(Y1 + Y2) = E(Y1) +E(Y2); see the end of this solution. I did
it the way above because it is just as easy. I used R to do the double integral above using the
integral2 function in the pracma package:

> library(pracma)

> integrand <- function(y1,y2) 2*(y1+y2)

> y2max <- function(y1) 1-y1

> integral2(integrand,0,1,0,y2max)

$‘Q‘

[1] 0.6666667

$error

[1] 1.387779e-17
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We can also do this integral by hand; note that

E(Y1 + Y2) =

∫ 1

y1=0

∫ 1−y1

y2=0
2(y1 + y2) dy2dy1

= 2

∫ 1

y1=0

[(
y1y2 +

y22
2

)∣∣∣∣1−y1
y2=0

]
dy1

= 2

∫ 1

y1=0

[
y1(1− y1) +

(1− y1)2

2

]
dy1

= 2

∫ 1

y1=0
y1(1− y1)dy1 +

∫ 1

y1=0
(1− y1)2dy1 =

2Γ(2)Γ(2)

Γ(4)
+

Γ(1)Γ(3)

Γ(4)
=

1

3
+

1

3
=

2

3
.

Now, to get V (Y1 + Y2), we have options.

Option 1: Use the variance computing formula on the random variable Y1 + Y2; i.e.,

V (Y1 + Y2) = E[(Y1 + Y2)
2]− [E(Y1 + Y2)]

2 = E[(Y1 + Y2)
2]−

(
2

3

)2

.

The second moment of Y1 + Y2 is

E[(Y1 + Y2)
2] =

∫ 1

y1=0

∫ 1−y1

y2=0
2(y1 + y2)

2 dy2dy1 =
1

2
.

I used R to do the double integral above using the integral2 function in the pracma package:

> library(pracma)

> integrand <- function(y1,y2) 2*(y1+y2)^2

> y2max <- function(y1) 1-y1

> integral2(integrand,0,1,0,y2max)

$‘Q‘

[1] 0.5

$error

[1] 5.551115e-17

Therefore,

V (Y1 + Y2) = E[(Y1 + Y2)
2]− [E(Y1 + Y2)]

2 =
1

2
−
(

2

3

)2

=
1

18
.

Option 2: This will take longer; it utilizes the formula

V (Y1 + Y2) = V (Y1) + V (Y2) + 2Cov(Y1, Y2).

Let’s get the marginal pdfs fY1(y1) and fY2(y2) after all. For 0 < y1 < 1, the marginal pdf of
Y1 is

fY1(y1) =

∫ 1−y1

y2=0
2 dy2 = 2(1− y1).
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For 0 < y2 < 1, the marginal pdf of Y2 is

fY2(y2) =

∫ 1−y2

y1=0
2 dy1 = 2(1− y2).

Summarizing,

fY1(y1) =

{
2(1− y1), 0 ≤ y1 ≤ 1

0, otherwise
and fY2(y2) =

{
2(1− y2), 0 ≤ y2 ≤ 1

0, otherwise.

Note that

Y1 ∼ beta(1, 2)

Y2 ∼ beta(1, 2).

Therefore,

V (Y1) = V (Y2) =
1(2)

(1 + 2)2(1 + 2 + 1)
=

1

18
.

Now, to get Cov(Y1, Y2), we will use the covariance computing formula:

Cov(Y1, Y2) = E(Y1Y2)− E(Y1)E(Y2).

Because Y1 ∼ beta(1, 2) and Y2 ∼ beta(1, 2), we know

E(Y1) = E(Y2) =
1

1 + 2
=

1

3
.

Also,

E(Y1Y2) =

∫ 1

y1=0

∫ 1−y1

y2=0
2y1y2 dy2dy1 =

1

12
.

I used R to do the double integral above using the integral2 function in the pracma package:

> library(pracma)

> integrand <- function(y1,y2) 2*y1*y2

> y2max <- function(y1) 1-y1

> integral2(integrand,0,1,0,y2max)

$‘Q‘

[1] 0.08333333

$error

[1] 7.806256e-18

Therefore,

Cov(Y1, Y2) = E(Y1Y2)− E(Y1)E(Y2) =
1

12
− 1

3

(
1

3

)
= − 1

36
.

Therefore,

V (Y1 + Y2) = V (Y1) + V (Y2) + 2Cov(Y1, Y2) =
1

18
+

1

18
+ 2

(
− 1

36

)
=

1

18
.
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y1

y 2

0 1

0
1

5.109. The support R = {(y1, y2) : 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1} is the unit square in the picture
above. The joint pdf fY1,Y2(y1, y2) is a three-dimensional function which takes the value y1 + y2
over this region and is otherwise equal to zero.

Note: We worked with this joint pdf in Problem 5.60. We derived the marginal pdfs to be

fY1(y1) =

 y1 +
1

2
, 0 ≤ y1 ≤ 1

0, otherwise
and fY2(y2) =

 y2 +
1

2
, 0 ≤ y2 ≤ 1

0, otherwise.

Let’s get the marginal means (they are identical). We have

E(Y1) =

∫ 1

y1=0
y1

(
y1 +

1

2

)
dy1 =

(
y31
3

+
y21
4

)∣∣∣∣1
y1=0

=
1

3
+

1

4
=

7

12
.

The same calculation shows E(Y2) = 7
12 also. Therefore,

E(30Y1 + 25Y2) = 30E(Y1) + 25E(Y2) = 30

(
7

12

)
+ 25

(
7

12

)
≈ 32.083.

The problem asks us to find V (30Y1 + 25Y2). This is

V (30Y1 + 25Y2) = 302V (Y1) + 252V (Y2) + 2(30)(25)Cov(Y1, Y2).

Let’s get the marginal variances (they are identical). The second moment of Y1 is

E(Y 2
1 ) =

∫ 1

y1=0
y21

(
y1 +

1

2

)
dy1 =

(
y41
4

+
y31
6

)∣∣∣∣1
y1=0

=
1

4
+

1

6
=

5

12
.

Therefore, the marginal variance of Y1 is

V (Y1) = E(Y 2
1 )− [E(Y1)]

2 =
5

12
−
(

7

12

)2

=
11

144
.
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The same calculation shows V (Y2) = 11
144 also. Now, let’s get the covariance. We will use the

covariance computing formula:

Cov(Y1, Y2) = E(Y1Y2)− E(Y1)E(Y2).

We already know E(Y1) = E(Y2) = 7
12 . Also,

E(Y1Y2) =

∫ 1

y1=0

∫ 1

y2=0
y1y2(y1 + y2) dy2dy1 =

1

3
.

I used R to do the double integral above using the integral2 function in the pracma package:

> library(pracma)

> integrand <- function(y1,y2) y1*y2*(y1+y2)

> integral2(integrand,0,1,0,1)

$‘Q‘

[1] 0.3333333

$error

[1] 2.775558e-17

Therefore,

Cov(Y1, Y2) = E(Y1Y2)− E(Y1)E(Y2) =
1

3
− 7

12

(
7

12

)
= − 1

144
.

Finally,

V (30Y1 + 25Y2) = 302V (Y1) + 252V (Y2) + 2(30)(25)Cov(Y1, Y2)

= 900

(
11

144

)
+ 625

(
11

144

)
+ 2(30)(25)

(
− 1

144

)
≈ 106.076.

Summary: We have a random variable 30Y1 + 25Y2 with mean and variance

µ ≈ 32.083

σ2 ≈ 106.076.

We don’t know the distribution of the random variable 30Y1+25Y2, so we can’t make probability
calculations exactly. We can use Tchebysheff’s Theorem to say

P (µ− kσ < 30Y1 + 25Y2 < µ+ kσ) ≥ 1− 1

k2
,

with the values of µ and σ2 above. If we take k = 2, we get

P (µ− 2σ < 30Y1 + 25Y2 < µ+ 2σ) ≥ 1− 1

22
= 0.75.

The lower endpoint is
32.083− 2

√
106.076 ≈ 11.484

and the upper endpoint is
32.083 + 2

√
106.076 ≈ 52.681.

Therefore, the total productivity 30Y1+25Y2 will fall between 11.484 and 52.681 with probability
at least 0.75.
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