
STAT 511 HW12 SOLUTIONS

5.114. We are given the marginal pdfs of Y1 and Y2. You should note that

Y1 ∼ gamma(4, 1)

Y2 ∼ exponential(2).

Therefore, E(Y1) = 4, V (Y1) = 4, E(Y2) = 2, and V (Y2) = 4.

(a) With U = Y1 − Y2, we have

E(U) = E(Y1 − Y2) = E(Y1)− E(Y2) = 4− 2 = 2.

(b) Because Y1 and Y2 are independent by assumption, we have

V (U) = V (Y1 − Y2) = V (Y1) + V (Y2)− 2 Cov(Y1, Y2)︸ ︷︷ ︸
= 0

= 4 + 4 = 8.

Note that we could not calculate V (U) if we did not make an independence assumption. We
don’t know the joint pdf of Y1 and Y2; we only know the marginal distributions.

(c) This part asks us to find P (Y1 − Y2 < 0). This probability is found by using the joint
distribution of Y1 and Y2. Therefore, the only way we can find P (Y1 − Y2 < 0) exactly is to
assume Y1 and Y2 are independent. Under this assumption, the joint pdf of Y1 and Y2, for
y1 > 0 and y2 > 0, is given by

fY1,Y2(y1, y2) = fY1(y1)fY2(y2)

=
1

6
y31e
−y1 × 1

2
e−y2/2 =

1

12
y31e
−y1−y2/2.

Summarizing, provided Y1 and Y2 are independent,

fY1,Y2(y1, y2) =


1

12
y31e
−y1−y2/2, y1 > 0, y2 > 0

0, otherwise.

The support of Y1 and Y2 is R = {(y1, y2) : y1 ≥ 0, y2 ≥ 0}, the entire first quadrant. This set
is shown at the top of the next page (left). The joint pdf fY1,Y2(y1, y2) is a three-dimensional
function which takes the value 1

12y
3
1e
−y1−y2/2 over this region (i.e., the entire first quadrant)

and is otherwise equal to zero.

We find P (Y1 − Y2 < 0) by integrating the joint pdf fY1,Y2(y1, y2) over the set

B = {(y1, y2) : y1 ≥ 0, y2 ≥ 0, y1 − y2 < 0}.

This set is shown at the top of the next page (right). Note that the boundary of this set is

y1 − y2 = 0 =⇒ y2 = y1.

The limits to calculate P (Y1 − Y2 < 0) come from this picture. We have

P (Y1 − Y2 < 0) =

∫ ∞
y2=0

∫ y2

y1=0

1

12
y31e
−y1−y2/2 dy1dy2

=
1

12

∫ ∞
y2=0

e−y2/2
(∫ y2

y1=0
y31e
−y1 dy1

)
dy2.
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y1

y 2

0

0

y1

y 2

0

0

Unfortunately, the only way to do the integral∫ y2

y1=0
y31e
−y1 dy1

is to use integration by parts three times. Note that the integrand is the gamma(4, 1) kernel,
but the integral is not over (0,∞), so this integral does not equal Γ(4) = 6. There is no way
I’m using integration by parts three times! Let’s reverse the order of integration.

P (Y1 − Y2 < 0) =

∫ ∞
y1=0

∫ ∞
y2=y1

1

12
y31e
−y1−y2/2 dy2dy1

=
1

12

∫ ∞
y1=0

y31e
−y1
(∫ ∞

y2=y1

e−y2/2 dy2

)
dy1

=
1

12

∫ ∞
y1=0

y31e
−y1
(
−2e−y2/2

∣∣∣∞
y2=y1

)
dy1

=
1

12

∫ ∞
y1=0

y31e
−y1
(

0 + 2e−y1/2
)
dy1 =

1

6

∫ ∞
y1=0

y31e
−3y1/2dy1.

Note that the last integrand can be written as

y31e
−3y1/2 = y4−11 e−y1/

2
3 ,

which is the gamma(4, 2/3) kernel. Therefore, we have

P (Y1 − Y2 < 0) =
1

6

∫ ∞
y1=0

y4−11 e−y1/
2
3dy1 =

1

6
Γ(4)

(
2

3

)4

≈ 0.198.

Note: If we did not assume Y1 and Y2 are independent in this example, then we could not
compute P (U < 0) = P (Y1 − Y2 < 0) exactly in part (c). The only thing we know about U is
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that it has mean E(U) = µ = 2 and variance V (U) = σ2 = 8, calculated in parts (a) and (b).
In lieu of independence, we could use Tchebysheff’s Theorem to calculate lower bounds on the
probability

P (µ− kσ < U < µ+ kσ)

for k > 1, but that’s about all we could do. In other words, the independence assumption is
critical in part (c).

5.126. We think of each item as a “trial” under the following framework:

Probability Count

−→ Category 1 (“exactly 1 defect”) p1 = 0.10 Y1
Trial outcome −→ Category 2 (“more than 1 defect”) p2 = 0.05 Y2

−→ Category 3 (“no defects”) p3 = 0.85 Y3

If n = 10 items are randomly selected, then Y = (Y1, Y2, Y3) follows a trinomial distribution
with n = 10 and the probabilities above; i.e., Y ∼ mult (n = 10,p = (0.10, 0.05, 0.85)). The
probability mass function of Y is

pY(y1, y2, y3) =
10!

y1!y2!y3!
(0.10)y1(0.05)y2(0.85)y3 ,

with support R = {(y1, y2, y3) : yj = 0, 1, 2, ..., 10;
∑3

j=1 yj = 10}.

In this problem, we want to calculate E(Y1 + 3Y2) and V (Y1 + 3Y2). Recall that, marginally,

Y1 ∼ b(n = 10, p1 = 0.10)

Y2 ∼ b(n = 10, p2 = 0.05).

Therefore, E(Y1) = np1 = 1, E(Y2) = np2 = 0.5, V (Y1) = np1(1 − p1) = 0.9, and V (Y2) =
np2(1− p2) = 0.475. We have

E(Y1 + 3Y2) = E(Y1) + 3E(Y2) = 1 + 3(0.5) = 2.5.

Also,
V (Y1 + 3Y2) = V (Y1) + 32V (Y2) + 2(1)(3)Cov(Y1, Y2).

Recall that
Cov(Y1, Y2) = −np1p2 = −10(0.10)(0.05) = −0.05.

Therefore,
V (Y1 + 3Y2) = 0.9 + 9(0.475) + 6(−0.05) = 4.875.

5.130. We have Y1, Y2, ..., Yn are mutually independent random variables with E(Yi) = µ and
V (Yi) = σ2, for i = 1, 2, ..., n.

(a) The covariance of U1 and U2 is

Cov(U1, U2) = Cov

 n∑
i=1

aiYi,

n∑
j=1

bjYj

 =

n∑
i=1

n∑
j=1

aibjCov(Yi, Yj).
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Now, we know that Cov(Yi, Yj) = 0 whenever i 6= j; i.e., whenever the subscripts don’t match,
because Y1, Y2, ..., Yn are mutually independent. Therefore, out of the n2 terms in this sum,
only n of them are nonzero−those that remain when the subscripts on each sum match; e.g.,
i = j = 1, i = j = 2, and so on. Therefore, we can write

Cov(U1, U2) =

n∑
i=1

aibiCov(Yi, Yi).

Recall that the covariance of any random variable with itself is the variance; i.e., Cov(Yi, Yi) =
V (Yi) = σ2, for i = 1, 2, ..., n. Therefore,

Cov(U1, U2) =
n∑
i=1

aibiσ
2 = σ2

n∑
i=1

aibi.

Because σ2 > 0, we have Cov(U1, U2) = 0 (and hence U1 and U2 are orthogonal) if and only if∑n
i=1 aibi = 0.

(b) We have Y1, Y2, ..., Yn are mutually independent normal random variables with E(Yi) = µ
and V (Yi) = σ2, for i = 1, 2, ..., n. We will learn in STAT 512 why U1 and U2 are bivariate
normal (the authors just tell you this is true). Recall that in the bivariate normal model,

U1 and U2 are independent ⇐⇒ ρ = 0.

The correlation of U1 and U2 is

ρ =
Cov(U1, U2)√
V (U1)V (U2)

.

We calculated Cov(U1, U2) above. Note that

V (U1) = V

(
n∑
i=1

aiYi

)
=

n∑
i=1

a2iV (Yi) +
∑∑
i 6=j

aiajCov(Yi, Yj)︸ ︷︷ ︸
= 0

=

n∑
i=1

a2iσ
2 = σ2

n∑
i=1

a2i .

The same argument shows

V (U2) = σ2
n∑
i=1

b2i .

Therefore,

ρ =
Cov(U1, U2)√
V (U1)V (U2)

=

σ2
n∑
i=1

aibi√√√√σ2
n∑
i=1

a2i × σ2
n∑
i=1

b2i

=

n∑
i=1

aibi√√√√ n∑
i=1

a2i

n∑
i=1

b2i

.

Suppose U1 and U2 are orthogonal. Then
∑n

i=1 aibi = 0 from part (a). Therefore, ρ = 0.
Therefore, U1 and U2 are independent.

Note: We know that −1 ≤ ρ ≤ 1, so ρ2 ≤ 1. In this last expression, this implies(
n∑
i=1

aibi

)2

≤
n∑
i=1

a2i

n∑
i=1

b2i ,

which is the Cauchy-Schwarz Inequality for sums. Interesting!
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5.133. The support is R = {(y1, y2) : 0 ≤ y1 ≤ y2 ≤ 1}, the upper triangle of the unit square.
See below:

y1

y 2

0 1

0
1

The joint pdf fY1,Y2(y1, y2) is a three-dimensional function which takes the value 6(1− y2) over
this region and is otherwise equal to zero.

Note: We had this same joint distribution in Problem 5.77 from HW11. Recall that we
calculated

fY1(y1) =

{
3(1− y1)2, 0 ≤ y1 ≤ 1

0, otherwise
and fY2(y2) =

{
6y2(1− y2), 0 ≤ y2 ≤ 1

0, otherwise

Because Y1 ∼ beta(1, 3), we have

E(Y1) =
1

1 + 3
=

1

4
.

(a) The conditional expectation E(Y1|Y2 = y2) is the mean of the conditional distribution
described by fY1|Y2(y1|y2). Let’s find fY1|Y2(y1|y2). Note that when Y2 is fixed at y2, then y1
must fall between 0 and y2; see the picture above. Therefore, fY1|Y2(y1|y2) > 0 when 0 ≤ y1 ≤ y2,
and otherwise fY1|Y2(y1|y2) = 0. Therefore, for 0 ≤ y1 ≤ y2, we have

fY1|Y2(y1|y2) =
fY1,Y2(y1, y2)

fY2(y2)
=

6(1− y2)
6y2(1− y2)

=
1

y2
.

Summarizing,

fY1|Y2(y1|y2) =


1

y2
, 0 ≤ y1 ≤ y2

0, otherwise.

We recognize this as the pdf of a uniform distribution which allows y1 to range from 0 to y2
(y2 regarded as fixed). In other words, Y1|Y2 = y2 ∼ U(0, y2). Borrowing what we know about
the uniform distribution, the mean

E(Y1|Y2 = y2) =
0 + y2

2
=
y2
2

;
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i.e., the midpoint of the support. If you wanted to calculate this using the formula

E(Y1|Y2 = y2) =

∫
R
y1fY1|Y2(y1|y2)dy1,

simply calculate

E(Y1|Y2 = y2) =

∫ y2

y1=0
y1

1

y2
dy1 =

1

y2

(
y21
2

∣∣∣y2
y1=0

)
=

y22
2y2

=
y2
2
.

(b) In Problem 5.77 on HW11, we calculated

E(Y1) =
1

4
.

Let’s see if we get the same answer for E(Y1) when we use the iterated rule for expectations;
i.e.,

E(Y1) = E[E(Y1|Y2)].

We know from part (a) that Y1|Y2 = y2 ∼ U(0, y2), so

E(Y1|Y2 = y2) =
y2
2

=⇒ E(Y1|Y2) =
Y2
2
.

Therefore,

E(Y1) = E[E(Y1|Y2)] = E

(
Y2
2

)
=

1

2
E(Y2).

Recall that Y2 ∼ beta(2, 2), so E(Y2) = 1
2 . Therefore,

E(Y1) =
1

2
E(Y2) =

1

2

(
1

2

)
=

1

4
,

which is the same answer we obtained when we calculated E(Y1) from the marginal distribution
of Y1.

5.136. This problem is set up as a hierarchical model; i.e.,

Y |λ ∼ Poisson(λ)

λ ∼ exponential(1).

(a) We want to find E(Y ). We don’t have the marginal distribution for Y ; instead, we only have
the conditional distribution of Y , given λ (in the first level of the hierarchy above). Therefore,
let’s use the law of iterated expectation; i.e.,

E(Y ) = E[E(Y |λ)].

We know Y |λ ∼ Poisson(λ), so the conditional expectation E(Y |λ) = λ, the mean of a
Poisson(λ) distribution. Therefore,

E(Y ) = E[E(Y |λ)] = E(λ) = 1,

because λ ∼ exponential(1).
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(b) To find V (Y ), we use Adam’s Rule. We have

V (Y ) = E[V (Y |λ)] + V [E(Y |λ)].

Now, Y |λ ∼ Poisson(λ), so E(Y |λ) = λ and V (Y |λ) = λ; recall the Poisson mean and variance
are equal. Therefore,

V (Y ) = E(λ) + V (λ) = 1 + 1 = 2.

Recall that if λ ∼ exponential(1), then E(λ) = 1 and V (λ) = 1.

(c) We want P (Y > 9), which is calculated by using the marginal distribution of Y . Note
that Y (a count of the number of defects) is a discrete random variable. We aren’t given the
marginal pmf of Y , but we can get it using some creativity. We are given

Y |λ ∼ Poisson(λ)

λ ∼ exponential(1).

Therefore, the joint distribution of Y and λ can be obtained by

fY,λ(y, λ) = fY |λ(y|λ)fλ(λ),

which is nonzero as long as y = 0, 1, 2, ..., and λ > 0. For these values,

fY,λ(y, λ) =
λye−λ

y!
× e−λ =

λye−2λ

y!
.

Summarizing, the joint distribution of Y and λ is described by

fY,λ(y, λ) =


λye−2λ

y!
, y = 0, 1, 2, ..., and λ > 0

0, otherwise,

which, interestingly, is a mixture of discrete and continuous components. To find the marginal
pmf of Y , we integrate fY,λ(y, λ) over λ > 0. This is easy; note that∫ ∞

λ=0
fY,λ(y, λ)dλ =

∫ ∞
λ=0

λye−2λ

y!
dλ =

1

y!

∫ ∞
λ=0

λ(y+1)−1e−λ/(
1
2
)dλ

=
1

y!
× Γ(y + 1)

(
1

2

)y+1

=

(
1

2

)y+1

,

because Γ(y + 1) = y!. Summarizing, the marginal probability mass function of Y is

pY (y) =


(

1

2

)y+1

, y = 0, 1, 2, ...,

0, otherwise.

We can now calculate P (Y > 9) by using pY (y). We have

P (Y > 9) = 1− P (Y ≤ 9) = 1−
9∑
y=0

(
1

2

)y+1

= 1− 1

2

9∑
y=0

(
1

2

)y
= 1− 1

2

[
1−

(
1
2

)10
1− 1

2

]
=

(
1

2

)10

=
1

1024
.

So, no it is not likely that Y > 9.

PAGE 7



STAT 511 HW12 SOLUTIONS

5.137. In this problem, Y1 is the weight of the item stocked by the supplier and Y2 is is the
weight of the amount sold during the week. We have the hierarchical model:

Y2|Y1 = y1 ∼ U(0, y1)

Y1 ∼ U(0, 1).

We are given that y1 = 3/4, so

Y2|Y1 = y1 ∼ U(0, 3/4)

Y1 ∼ U(0, 1).

We want to find E(Y2), the expected amount sold during the week. We are going to find this
using the law of iterated expectation; i.e.,

E(Y2) = E[E(Y2|Y1)].

Note that E(Y2|Y1 = 3/4) = 3/8, the midpoint of the (conditional) uniform distribution from
0 to 3/4. Therefore, E(Y2|Y1) = 3/8 (a constant) and thus

E(Y2) = E

(
3

8

)
=

3

8
.

5.141. It looks like we have another hierarchical model; here,

Y2|Y1 = y1 ∼ U(0, y1)

Y1 ∼ exponential(λ).

We want to find E(Y2) and V (Y2). We are going to use the iterated laws again. The conditional
distribution Y2|Y1 = y1 ∼ U(0, y1), so the conditional mean

E(Y2|Y1 = y1) =
y1
2
,

the midpoint of the (conditional) uniform distribution from 0 to y1. Therefore,

E(Y2) = E[E(Y2|Y1)] = E

(
Y1
2

)
=

1

2
E(Y1) =

λ

2
,

because Y1 ∼ exponential(λ). To get V (Y2), we will use Adam’s Rule. The conditional distri-
bution Y2|Y1 = y1 ∼ U(0, y1), so the conditional variance

V (Y2|Y1 = y1) =
y21
12
,

the variance of a uniform distribution from 0 to y1. Therefore,

V (Y2) = E[V (Y2|Y1)] + V [E(Y2|Y1)] = E

(
Y 2
1

12

)
+ V

(
Y1
2

)
=

1

12
E(Y 2

1 ) +
1

4
V (Y1).

Now, Y1 ∼ exponential(λ), so V (Y1) = λ2 and

E(Y 2
1 ) = V (Y1) + [E(Y1)]

2 = λ2 + λ2 = 2λ2.

Therefore,

V (Y2) =
2λ2

12
+
λ2

4
=

5λ2

12
.
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y1

y 2

0

0

y1

y 2

0 a

0
a

5.151. In this problem, we are given

Y1 ∼ exponential(β)

Y2 ∼ exponential(β)

and Y1 and Y2 are independent. The joint pdf of Y = (Y1, Y2) is the product of the marginal
pdfs (because of independence). Therefore,

fY1,Y2(y1, y2) = fY1(y1)fY2(y2)

=
1

β
e−y1/β × 1

β
e−y2/β =

1

β2
e−(y1+y2)/β.

Summarizing,

fY1,Y2(y1, y2) =


1

β2
e−(y1+y2)/β, y1 ≥ 0, y2 ≥ 0

0, otherwise.

The support of Y1 and Y2 is R = {(y1, y2) : y1 ≥ 0, y2 ≥ 0}, the entire first quadrant. This set is
shown at the top of this page (left). The joint pdf fY1,Y2(y1, y2) is a three-dimensional function
which takes the value (1/β2)e−(y1+y2)/β over this region (i.e., the entire first quadrant) and is
otherwise equal to zero.

(b) We calculate P (Y1 + Y2 ≤ a) by integrating the joint pdf fY1,Y2(y1, y2) over the set

B = {(y1, y2) : y1 ≥ 0, y2 ≥ 0, y1 + y2 ≤ a}.

This set is shown at the top of this page (right). The boundary of this set is

y1 + y2 = a =⇒ y2 = a− y1,
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a linear function of y1 with intercept a > 0 and slope −1. The limits on the double integral to
calculate P (Y1 + Y2 ≤ a) come from this picture:

P (Y1 + Y2 ≤ a) =

∫ a

y1=0

∫ a−y1

y2=0

1

β2
e−(y1+y2)/β dy2dy1

=
1

β2

∫ a

y1=0
e−y1/β

(∫ a−y1

y2=0
e−y2/β dy2

)
dy1

=
1

β2

∫ a

y1=0
e−y1/β

(
−βe−y2/β

∣∣∣a−y1
y2=0

)
dy1

=
1

β2

∫ a

y1=0
e−y1/β

(
β − βe−(a−y1)/β

)
dy1

=
1

β2

∫ a

y1=0

(
βe−y1/β − βe−a/β

)
dy1

=
1

β

(
−βe−y1/β − y1e−a/β

) ∣∣∣a
y1=0

=
1

β

(
−βe−a/β − ae−a/β + β + 0

)
= 1− e−a/β − a

β
e−a/β.

Remark: Note that P (Y1 + Y2 ≤ a) is essentially the cdf of the “random variable” Y1 + Y2,
evaluated at a. Interestingly, if you take a derivative of this expression above, you get

1

β2
ae−a/β (a > 0),

which, as a function of a, we recognize as a gamma(2, β) pdf. Interesting!

5.164. Recall that for a univariate random variable X, the mgf of X is given by

mX(t) = E(etX).

Finding mX(t) involves calculating a (single) sum or integral, depending on whether X is
discrete or continuous, respectively. This question introduces you to joint moment generating
functions. Suppose X = (X1, X2) is a bivariate random vector (discrete or continuous). The
joint moment generating function (mgf) of X1 and X2 is

mX1,X2(t1, t2) = E(et1X1+t2X2).

For mX1,X2(t1, t2) to exist, this expectation must be finite in an open neighborhood about the
origin (0, 0). Look what happens when we put in t1 = 0 or t2 = 0 into the joint mgf:

mX1,X2(0, t2) = E(et2X2) = mX2(t2)

mX1,X2(t1, 0) = E(et1X1) = mX1(t1).

Therefore, it is easy to get the marginal mgfs mX1(t1) and mX2(t2) from the joint mgf. Note
that joint mgfs for random vectors in higher dimensions are defined in the same way. The joint
mgf of X = (X1, X2, ..., Xn) is

mX(t1, t2, ..., tn) = E
(
et1X1+t2X2+···+tnXn

)
.
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Now, we get to the problem. For three random variables X1, X2, and X3, the joint mgf of
X = (X1, X2, X3) is

mX(t1, t2, t3) = E
(
et1X1+t2X2+t3X3

)
.

(a) Put in t1 = t2 = t3 = t into mX(t1, t2, t3) and we get

mX(t, t, t) = E
(
etX1+tX2+tX3

)
= E

[
et(X1+X2+X3)

]
,

which is the mgf of the “random variable” X1 +X2 +X3.

(b) Put in t1 = t2 = t and t3 = 0 into mX(t1, t2, t3) and we get

mX(t, t, 0) = E
(
etX1+tX2+0X3

)
= E

[
et(X1+X2)

]
,

which is the mgf of the “random variable” X1 +X2.

(c) We don’t have to do this problem in its full-blown generality (although it is not that hard).
To get the main point, take k1 = k2 = k3 = 1. That is, let’s show

∂3mX(t1, t2, t3)

∂t1∂t2∂t3

∣∣∣∣
t1=t2=t3=0

= E(X1X2X3).

Proof. Note that
mX(t1, t2, t3) = E

(
et1X1+t2X2+t3X3

)
.

Therefore,

∂3mX(t1, t2, t3)

∂t1∂t2∂t3
=

∂3

∂t1∂t2∂t3
E
(
et1X1+t2X2+t3X3

)
= E

(
∂3

∂t1∂t2∂t3
et1X1+t2X2+t3X3

)
.

Interchanging the order of the derivative and expectation (i.e., triple sum or triple integral) is
permitted as long as the mgf exists−recall that we had this same discussion with univariate
mgfs; see pp 52 (notes). Now, note that

∂3

∂t1∂t2∂t3
et1X1+t2X2+t3X3 =

∂2

∂t2∂t3
X1e

t1X1et2X2+t3X3

=
∂

∂t3
X1e

t1X1X2e
t2X2et3X3 = X1e

t1X1X2e
t2X2X3e

t3X3 .

Therefore,

∂3mX(t1, t2, t3)

∂t1∂t2∂t3

∣∣∣∣
t1=t2=t3=0

= E

(
∂3

∂t1∂t2∂t3
et1X1+t2X2+t3X3

)∣∣∣∣
t1=t2=t3=0

= E
(
X1e

t1X1X2e
t2X2X3e

t3X3
) ∣∣∣
t1=t2=t3=0

= E(X1X2X3),

as claimed. Calculating higher-order mixed partial derivatives will establish the more general
result for any k1, k2, and k3.

PAGE 11



STAT 511 HW12 SOLUTIONS

5.165. This problem utilizes joint mgfs (discussed in Problem 5.164) to derive mathematical
properties of the multinomial distribution. Suppose

X = (X1, X2, X3) ∼ mult(n,p; p1 + p2 + p3 = 1),

where the category probabilities are in p = (p1, p2, p3). Therefore, X = (X1, X2, X3) has a
trinomial distribution and the joint pmf is

pX(x1, x2, x3) =
n!

x1!x2!x3!
px11 x

x2
2 p

x3
3 ,

for values of x1, x2, x3 in the support

R = {(x1, x2, x3) : xj = 0, 1, 2, ..., n; x1 + x2 + x3 = n}.

(a) The joint mgf of X = (X1, X2, X3) is

mX(t1, t2, t3) = E
(
et1X1+t2X2+t3X3

)
=

∑
(x1,x2,x3)∈R

et1x1+t2x2+t3x3
n!

x1!x2! · · ·xn!
px11 p

x2
2 p

x3
3

=
∑

(x1,x2,x3)∈R

n!

x1!x2!x3!
(p1e

t1)x1(p2e
t2)x2(p3e

t3)x3 ,

which we recognize as the multinomial expansion of (p1e
t1 + p2e

t2 + p3e
t3)n; see pp 20 (notes).

Therefore, the mgf of X = (X1, X2, X3) is

mX(t1, t2, t3) = (p1e
t1 + p2e

t2 + p3e
t3)n.

(b) Take the joint mgf in part (a), and put in t1 = t and t2 = t3 = 0. The LHS is

mX(t, 0, 0) = E
(
etX1+0X2+0X3

)
= E(etX1), the marginal mgf of X1.

The RHS is
(p1e

t + p2e
0 + p3e

0)n = (p1e
t + p2 + p3)

n = [(1− p1) + p1e
t]n,

because p1 + p2 + p3 = 1. We recognize [(1− p1) + p1e
t]n as the (marginal) mgf of a binomial

distribution with number of trials n and probability of “success” p1. Therefore, marginally,
X1 ∼ b(n, p1).

(c) Recall the covariance computing formula

Cov(X1, X2) = E(X1X2)− E(X1)E(X2).

We know X1 ∼ b(n, p1) and, analogously, X2 ∼ b(n, p2). Therefore, E(X1) = np1 and E(X2) =
np2. From Problem 5.164 (c), we know we can find E(X1X2) by calculating

∂2mX(t1, t2, t3)

∂t1∂t2

∣∣∣∣
t1=t2=t3=0

.

Note that

∂2mX(t1, t2, t3)

∂t1∂t2
=

∂

∂t2

[
∂mX(t1, t2, t3)

∂t1

]
=

∂

∂t2

[
∂

∂t1
(p1e

t1 + p2e
t2 + p3e

t3)n
]

=
∂

∂t2

[
n(p1e

t1 + p2e
t2 + p3e

t3)n−1
]
p1e

t1

= n(n− 1)(p1e
t1 + p2e

t2 + p3e
t3)n−2p1e

t1p2e
t2 .
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Therefore,

E(X1X2) =
∂2mX(t1, t2, t3)

∂t1∂t2

∣∣∣∣
t1=t2=t3=0

= n(n− 1)(p1e
t1 + p2e

t2 + p3e
t3)n−2p1e

t1p2e
t2

∣∣∣∣
t1=t2=t3=0

= n(n− 1)(p1e
0 + p2e

0 + p3e
0)n−2p1e

0p2e
0

= n(n− 1)(p1 + p2 + p3)
n−2p1p2

= n(n− 1)p1p2.

Therefore,

Cov(X1, X2) = E(X1X2)− E(X1)E(X2) = n(n− 1)p1p2 − np1np2
= n2p1p2 − np1p2 − n2p1p2 = −np1p2,

which agrees with how we derived this in class (i.e., by using our rules for covariances of linear
combinations of random variables).
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