
STAT 511 HW5 SOLUTIONS

3.48. Let Y denote the number of radar sets detecting the missile; i.e., Y ∼ b(n, p = 0.9).
(a) Let n = 5; i.e., Y ∼ b(n = 5, p = 0.9). We have

P (Y = 4) =

(
5

4

)
(0.9)4(0.1)1 ≈ 0.328

and

P (Y ≥ 1) = 1− P (Y = 0) = 1−
(

5

0

)
(0.9)0(0.1)5 = 1− 0.00001 = 0.99999.

In R, these are calculated as

> dbinom(4,5,0.9)

[1] 0.32805

> 1-pbinom(0,5,0.9)

[1] 0.99999

(b) Suppose Y ∼ b(n, p = 0.9). The missile will be detected when at least one radar set detects
the missile; i.e., when the event {Y ≥ 1} occurs. The probability of this event is

P (Y ≥ 1) = 1− P (Y = 0) = 1−
(
n

0

)
(0.9)0(0.1)n = 1− (0.1)n.

We want this probability to be 0.999. Therefore,

1− (0.1)n = 0.999 =⇒ n = 3.

We would need n = 3 radar sets to have this reliability level.

3.54. If Y ∼ b(n, p), then Y counts the number of successes in n Bernoulli trials. The random
variable Y ∗ = n− Y therefore counts the number of failures.
(a) From what I can tell, part (a) is obvious. The event {n − Y = y∗} and {Y = n − y∗} are
the same event; i.e., just rewrite using algebra. Therefore, they have the same probability.
(b) For y∗ = 0, 1, 2, ..., n, we have from part (a),

P (Y ∗ = y∗) = P (Y = n− y∗) =

(
n

n− y∗

)
pn−y

∗
(1− p)n−(n−y

∗)

=

(
n

y∗

)
(1− p)y

∗
pn−y

∗
.

This shows that the number of failures Y ∗ ∼ b(n, 1−p). Note that
(

n
n−y∗

)
=
(
n
y∗

)
from Exercise

2.68 (HW2).
(c) I don’t know that it is obvious, but it makes sense intuitively. Simply interchange the
meaning of “success” and “failure.”

3.62. (a) We would have to assume that the events

A = {inspect plane that has a wing crack}
B = {inspect detail where crack located}
C = {detecting the damage}
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are mutually independent with p1 = P (A), p2 = P (B), and p3 = P (C). Detecting the crack
would occur when A ∩B ∩ C occurs. Under the mutually independence assumption,

P (A ∩B ∩ C) = P (A)P (B)P (C) = p1p2p3.

(b) Let Y denote the number of planes where a wing crack is detected. Then Y ∼ b(n = 3, p =
0.36). Then

P (Y ≥ 1) = 1− P (Y = 0) = 1−
(

3

0

)
(0.36)0(0.64)3 ≈ 1− 0.262 = 0.738.

In R,

> 1-pbinom(0,3,0.36)

[1] 0.737856

3.66. (a) Showing the geometric pmf sums to 1 was done in the notes; see pp 58.
(b) For y = 1, 2, 3, ..., the pmf of Y ∼ geometric(p) is pY (y) = qy−1p, where q = 1−p. Therefore,
for y = 2, 3, 4, ...,

pY (y)

pY (y − 1)
=

qy−1p

q(y−1)−1p
=

1

q−1
= q,

as claimed. Because q < 1, note that

pY (y) = qpY (y − 1) < pY (y − 1),

for y = 2, 3, 4, .... In other words, pY (1) > pY (2) > pY (3) > pY (4) > · · · . This means y = 1 is
the most likely value in the geometric distribution; i.e., the mode of Y is y = 1.

3.71. (a) We are given that a is a positive integer. Using the complement rule, we have

P (Y > a) = 1− P (Y ≤ a) = 1−
a∑

y=1

qy−1p
x=y−1

= 1− p

a−1∑
x=0

qx.

Note that
a∑

x=0

qx =
1− qa

1− q

because
∑a−1

x=0 q
x is a finite geometric sum with common ratio q. Therefore, because 1− q = p,

we have

P (Y > a) = 1− p

(
1− qa

1− q

)
= 1− (1− qa) = qa,

as claimed.
(b) Recall the definition of conditional probability and write

P (Y > a + b|Y > a) =
P (Y > a + b and Y > a)

P (Y > a)
=

P (Y > a + b)

P (Y > a)
.

The last step is true because {Y > a+b} ⊂ {Y > a} so that {Y > a+b}∩{Y > a} = {Y > a+b}.
Therefore,

P (Y > a + b|Y > a) =
P (Y > a + b)

P (Y > a)
=

qa+b

qa
= qb.
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This shows that
P (Y > a + b|Y > a) = P (Y > b)

which is a condition known as the memoryless condition. The geometric random variable is the
only discrete random variable that satisfies this property.

Interpretation: Suppose Experimenter 1 is observing Bernoulli trials, and the first success
has not occurred in the first a trials. This is what is meant by the “given” event {Y > a}. The
probability she has to wait an additional b trials to observe the first success; i.e., {Y > a + b}
is the same as for another experimenter, say Experimenter 2, having to wait b trials from the
outset. In other words, the fact that Experimenter 1 has not observed a success in the first a
trials has been “forgotten.”

(c) I don’t know that this is obvious, but it is certainly true. I think the key is that we are
waiting for the “first success.” Because the trials are independent, observing a bunch of failures
from the outset doesn’t affect future trials and hence does not impact when we will observe the
first success.

3.77. Suppose Y ∼ geometric(p). We want to calculate

P (Y = odd integer) = P (Y = 1) + P (Y = 3) + P (Y = 5) + P (Y = 7) + · · ·
= p + q2p + q4p + q6p + · · ·

= p
(
1 + q2 + q4 + q6 + · · ·

)
= p

∞∑
j=0

(q2)j .

Note that
∑∞

j=0(q
2)j is an infinite geometric sum with common ratio q2. Therefore,

∞∑
j=0

(q2)j =
1

1− q2
.

The result follows immediately.

3.97. In this problem, we envision each oil well as a “trial,” where “success” means that the well
produces oil (i.e., “strikes” oil). Assume the oil wells are independent, each with probability
of success p = 0.2. These are the assumptions needed for the question in part (c); i.e., the
Bernoulli trial assumptions hold.

(a) Let Y denote the number of wells observed to find the first productive well (i.e., the first
success). Then Y ∼ geometric(p = 0.2) and

P (Y = 3) = (1− 0.2)2(0.2) = 0.128.

In R,

> dgeom(3-1,0.2)

[1] 0.128
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(b) Let X denote the number of wells to find the third productive well (i.e., the third success).
Then X ∼ nib(r = 3, p = 0.2) and

P (X = 7) =

(
7− 1

3− 1

)
(0.2)3(1− 0.2)4 ≈ 0.049.

In R,

> dnbinom(7-3,3,0.2)

[1] 0.049152

(c) See discussion above.
(d) In this part, we want E(X) and V (X) in part (b). With r = 3 and p = 0.2, we have

E(X) =
r

p
=

3

0.2
= 15 wells.

Also,

V (X) =
rq

p2
=

3(0.8)

0.22
= 60 (wells)2

3.159. In Exercise 3.158, Y is a random variable with mgf mY (t). The random variable
W = aY + b is a linear function of Y . You showed in HW4 that mW (t) = ebtmY (at). To find
E(W ) note that

d

dt
mW (t) =

d

dt
ebtmY (at) = bebtmY (at) + ebtm′Y (at)× a = ebt

[
bmY (at) + am′Y (at)

]
.

Evaluating this derivative at t = 0 gives

E(W ) = e0
[
bmY (0) + am′Y (0)

]
= aE(Y ) + b.

Above we used the fact that mY (0) = 1 and m′Y (0) = E(Y ).

To find V (W ), we can find E(W 2) first. Taking another derivative, we have

d2

dt2
mW (t) =

d

dt

{
ebt
[
bmY (at) + am′Y (at)

]}
= bebt

[
bmY (at) + am′Y (at)

]
+ ebt

[
abm′Y (at) + a2m′′Y (at)

]
.

Evaluating this derivative at t = 0 gives

E(W 2) = be0
[
bmY (0) + am′Y (0)

]
+ e0

[
abm′Y (0) + a2m′′Y (0)

]
= b[b + aE(Y )] + abE(Y ) + a2E(Y 2)

= a2E(Y 2) + 2abE(Y ) + b2.

From the variance computing formula, we have

V (W ) = E(W 2)− [E(W )]2 = a2E(Y 2) + 2abE(Y ) + b2 − [aE(Y ) + b]2

= a2E(Y 2) + 2abE(Y ) + b2 − {a2[E(Y )]2 + 2abE(Y ) + b2}
= a2E(Y 2)− a2[E(Y )]2

= a2{E(Y 2)− [E(Y )]2} = a2V (Y )

as claimed.
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3.160. We are given that Y ∼ b(n, p). Recall Y counts the number of successes in n Bernoulli
trials. Therefore, Y ∗ = n − Y counts the number of failures. We know E(Y ) = np and
V (Y ) = npq, where q = 1− p.

(a) We have
E(Y ∗) = E(n− Y ) = n− E(Y ) = n− np = n(1− p) = nq

and
V (Y ∗) = V (n− Y ) = (−1)2V (Y ) = npq.

(b) The mgf of Y ∗ is

mY ∗(t) = E(etY
∗
) = E[et(n−Y )] = entE(e−tY ) = entmY (−t) = ent(q + pe−t)n

= (et)n(q + pe−t)n

= (qet + p)n.

(c) The mgf in part (b) is the mgf of a binomial distribution with number of trials n and “suc-
cess probability” q = 1− p. Therefore, Y ∗ ∼ b(n, 1− p).
(d) Y ∗ = n− Y counts the number of failures.
(e) I already answered this in another problem.

3.188. We are given that Y ∼ b(n, p). Use the definition of conditional probability; i.e.,

P (Y > 1|Y ≥ 1) =
P (Y > 1 and Y ≥ 1)

P (Y ≥ 1)
=

P (Y > 1)

P (Y ≥ 1)
.

The last step is true because {Y > 1} ⊂ {Y ≥ 1} so that {Y > 1} ∩ {Y ≥ 1} = {Y > 1}. Now
use the complement rule and write

P (Y > 1) = 1− P (Y ≤ 1) = 1− P (Y = 0)− P (Y = 1)

= 1−
(
n

0

)
p0(1− p)n −

(
n

1

)
p1(1− p)n−1

= 1− (1− p)n − np(1− p)n−1.

Also,

P (Y ≥ 1)− 1− P (Y = 0) = 1−
(
n

0

)
p0(1− p)n = 1− (1− p)n.

The result follows.
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