STAT 511 HW5 SOLUTIONS

3.48. Let Y denote the number of radar sets detecting the missile; i.e., Y ~ b(n,p = 0.9).
(a) Let n=5;1e., Y ~b(n=>5,p=0.9). We have
5
P(Y =4) = <4> (0.9)4(0.1)* ~ 0.328

and
5
PY>1)=1-PY=0)=1- <O> (0.9)0(0.1)5 =1 -—0.00001 = 0.99999.

In R, these are calculated as

> dbinom(4,5,0.9)
[1] 0.32805

> 1-pbinom(0,5,0.9)
[1] 0.99999

(b) Suppose Y ~ b(n,p = 0.9). The missile will be detected when at least one radar set detects
the missile; i.e., when the event {Y > 1} occurs. The probability of this event is

PY>1)=1-P(Y=0)=1- (g) (0.9)°(0.1)" = 1 — (0.1)".

We want this probability to be 0.999. Therefore,
1—-(0.1)"=0.999 — n=3.

We would need n = 3 radar sets to have this reliability level.

3.54. If Y ~ b(n,p), then Y counts the number of successes in n Bernoulli trials. The random
variable Y* = n — Y therefore counts the number of failures.

(a) From what I can tell, part (a) is obvious. The event {n — Y = y*} and {Y = n — y*} are
the same event; i.e., just rewrite using algebra. Therefore, they have the same probability.

(b) For y* =0,1,2,...,n, we have from part (a),

* * * n n—y™* n—(n—y*

= (;) (L—p) ¥

This shows that the number of failures Y* ~ b(n, 1 —p). Note that (n_ny*)
2.68 (HW2).

(c) T don’t know that it is obvious, but it makes sense intuitively. Simply interchange the
meaning of “success” and “failure.”

(yTi) from Exercise

3.62. (a) We would have to assume that the events

A = {inspect plane that has a wing crack}
B = {inspect detail where crack located}
C = {detecting the damage}
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are mutually independent with p; = P(A), po = P(B), and p3 = P(C). Detecting the crack
would occur when AN B N C occurs. Under the mutually independence assumption,

P(Aﬁ BN C) = P(A)P(B)P(C) = p1p2P3.

b) Let Y denote the number of planes where a wing crack is detected. Then Y ~ b(n =3,p =
0.36). Then

3
PY>1)=1-PY=0)=1- (0> (0.36)°(0.64)% ~ 1 — 0.262 = 0.738.
In R,

> 1-pbinom(0,3,0.36)
[1] 0.737856

3.66. (a) Showing the geometric pmf sums to 1 was done in the notes; see pp 58.
(b) For y = 1,2, 3, ..., the pmf of Y ~ geometric(p) is py (y) = ¢Y~!p, where ¢ = 1—p. Therefore,

for y =2,3,4, ...,
pyly) _ ¢7p 1 _
py(ly—1) ¢qw=D-1p ¢t 7

as claimed. Because ¢ < 1, note that

py(y) =aqpy(y —1) <py(y —1),

for y = 2,3,4, ... In other words, py (1) > py(2) > py(3) > py(4) > ---. This means y = 1 is
the most likely value in the geometric distribution; i.e., the mode of Y is y = 1.

3.71. (a) We are given that a is a positive integer. Using the complement rule, we have
a —u—1 a—1
PY>a)=1-P(Y<a)=1-) ¢ 'p "= 1-p> "
y=1 =0

Note that

iqm: Lo
1—g¢q
x=0

because Z;;é q* is a finite geometric sum with common ratio q. Therefore, because 1 — g = p,

we have
1—¢q°

1—g¢q

P(Y>a)=1—p< >=1—(1—Q“)=q“,

as claimed.
(b) Recall the definition of conditional probability and write
PY>a+bandY >a) P(Y >a+0b)
PY blY = =
(Y'>a+by>a) PY > a) PY > a)
The last step is true because {Y > a+b} C {Y > a} so that {Y > a+b}n{Y > a} = {Y > a+b}.
Therefore,

PY >a+b) ¢
PY >a+blY >a) = ;(Y>a)): " =qb.
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This shows that
PY >a+blY >a) =P >b)

which is a condition known as the memoryless condition. The geometric random variable is the
only discrete random variable that satisfies this property.

Interpretation: Suppose Experimenter 1 is observing Bernoulli trials, and the first success
has not occurred in the first a trials. This is what is meant by the “given” event {Y > a}. The
probability she has to wait an additional b trials to observe the first success; i.e., {Y > a + b}
is the same as for another experimenter, say Experimenter 2, having to wait b trials from the
outset. In other words, the fact that Experimenter 1 has not observed a success in the first a
trials has been “forgotten.”

(c) I don’t know that this is obvious, but it is certainly true. I think the key is that we are
waiting for the “first success.” Because the trials are independent, observing a bunch of failures
from the outset doesn’t affect future trials and hence does not impact when we will observe the
first success.

3.77. Suppose Y ~ geometric(p). We want to calculate

P(Y =odd integer) = PY=1)+PY =3)+PY =5)+PY =7)+---
p+ép+a'p+dp+--

o
= p(I+@+d ++--) = pd (@)
=0

Note that > 22, (¢?)7 is an infinite geometric sum with common ratio ¢?. Therefore,

S =
j=0

1—
j q

The result follows immediately.

3.97. In this problem, we envision each oil well as a “trial,” where “success” means that the well
produces oil (i.e., “strikes” oil). Assume the oil wells are independent, each with probability
of success p = 0.2. These are the assumptions needed for the question in part (c); i.e., the
Bernoulli trial assumptions hold.

(a) Let Y denote the number of wells observed to find the first productive well (i.e., the first
success). Then Y ~ geometric(p = 0.2) and

P(Y =3) = (1-0.2)%0.2) = 0.128.
In R,

> dgeom(3-1,0.2)
[1] 0.128
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(b) Let X denote the number of wells to find the third productive well (i.e., the third success).
Then X ~ nib(r = 3,p = 0.2) and

PX=7) = (; B 1) (0.2)3(1 — 0.2)* ~ 0.049.

In R,

> dnbinom(7-3,3,0.2)
[1] 0.049152

(c) See discussion above.
(d) In this part, we want E(X) and V(X) in part (b). With » = 3 and p = 0.2, we have

BE(X) = % = 032 = 15 wells.
Also,
V(X) = " 3(0.8) = 60 (wells)?

3.159. In Exercise 3.158, Y is a random variable with mgf my (¢). The random variable
W = aY + b is a linear function of Y. You showed in HW4 that my(t) = e’*my (at). To find
E(W) note that

d d
%mW(t) %ebtmy(at) = beP'my (at) 4+ e?'ml, (at) x a = ™ [bmy (at) + amy (at)] .

Evaluating this derivative at ¢ = 0 gives
E(W) =€ [bmy (0) + am¥-(0)] = aB(Y) + b.
Above we used the fact that my (0) = 1 and m{, (0) = E(Y).

To find V(W), we can find E(W?) first. Taking another derivative, we have
d? d
@mw(t) = = {ebt [bmy (at) + am'y(at)]}
= be’ [bmy (at) + amly (at)] + e [abm}y (at) + a*m¥-(at)] .
Evaluating this derivative at ¢ = 0 gives
EW? = b [brmy (0) + amy-(0)] + e? [abmy-(0) + a2m’{f(0)]
= bb+aEY)] +abE(Y)+d’E(Y?)
= d’E(Y?) +2abE(Y) + b
From the variance computing formula, we have

V(W) =EW?) - [EW)]? = &®E(Y?) + 2abE

) Y) + 0% — [aE(Y) + b)?
= d’E(Y?) + 2abE
e

(

(V) + 0% — {a®[E(Y)]? + 2abE(Y) + b*}
a’[BE(Y)]

) = [E(Y)]’} =a®V(Y)

= 2E(Y?
2{E(

as claimed.
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3.160. We are given that Y ~ b(n,p). Recall Y counts the number of successes in n Bernoulli
trials. Therefore, Y* = n — Y counts the number of failures. We know E(Y) = np and
V(Y) = npq, where g =1—1p

(a) We have
EY")=En-Y)=n—EY)=n—-np=n(l—p) =ngq
and
VY*) =V(n-Y)=(-1)°V(Y) = npq.
(b) The mgf of Y* is

My (t) — E(etY*) _ E[et(an)} — entE(eitY) _ entmy(_t) — 6nt(q _’_peft)n
(€")"(q+pe™")"

(qe’ +p)"

(¢) The mgf in part (b) is the mgf of a binomial distribution with number of trials n and “suc-

cess probability” ¢ =1 — p. Therefore, Y* ~ b(n,1 — p).

(d) Y* =n —Y counts the number of failures.
(e) I already answered this in another problem.

3.188. We are given that Y ~ b(n,p). Use the definition of conditional probability; i.e.,

PY>1landY >1) P(Y >1)

PY >1Y >1)= TS 1) =Py =1

The last step is true because {Y > 1} C {Y > 1} so that {Y > 1} n{Y > 1} ={Y > 1}. Now
use the complement rule and write

PY>1)=1-P(Y <1) = 1-PY =0)—P(Y =1)
e
= 1—-(1—p)" —np(l—p)" "

Also,

P(Y > 1)—1-P(Y =0) = —(’g>p°<1—p>"=1—<1—p>".

The result follows.
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