
STAT 511 HW9 SOLUTIONS

4.128. Let Y denote the weekly repair cost. Note that the nonzero part of the pdf fY (y) =
3(1− y)2 is what results in the beta(α, β) family when α = 1 and β = 3; observe

Γ(1 + 3)

Γ(1)Γ(3)
y1−1(1− y)3−1 = 3(1− y)2.

Therefore Y ∼ beta(1, 3). We want to find φ0.9, the p = 0.9 quantile of this distribution. Note
that φ0.9 solves

P (Y ≤ φ0.9) = 0.9 ⇐⇒ P (Y > φ0.9) = 0.1;

i.e., the “cost will exceed....only 10% of the time.” We can find φ0.9 by solving

0.9
set
=

∫ φ0.9

0
3(1− y)2dy = −

∫ 1−φ0.9

1
3u2du (u = 1− y)

= −u3
∣∣∣1−φ0.9
1

= −
[
(1− φ0.9)3 − 1

]
=⇒ (1− φ0.9)3 = 0.1 =⇒ φ0.9 = 1− (0.1)1/3 ≈ 0.536.

We could check our work in R using the qbeta function:

> qbeta(0.9,1,3) # p=0.9 quantile

[1] 0.5358411

Therefore, we would set the weekly budget at approximately 53.6 dollars; this would lead to
exceeding the budget only about 10 percent of the time.

4.129. Let Y denote the proportion of time the machine is down; Y ∼ beta(1, 2). Let

C = 10 + 20Y + 4Y 2

denote the cost of machine down time. The mean of C is

E(C) = E(10 + 20Y + 4Y 2) = 10 + 20E(Y ) + 4E(Y 2).

The beta mgf is not in a friendly form, so let’s not use it. We derived formulas for the mean
and variance of a beta distribution; i.e.,

E(Y ) =
1

1 + 2
=

1

3
and V (Y ) =

1(2)

(1 + 2)2(1 + 2 + 1)
=

2

36
=

1

18
.

Therefore, the second moment of Y is

E(Y 2) = V (Y ) + [E(Y )]2 =
1

18
+

(
1

3

)2

=
1

6
.

Finally,

E(C) = 10 + 20E(Y ) + 4E(Y 2) = 10 + 20

(
1

3

)
+ 4

(
1

6

)
=

52

3
≈ 17.33.

Therefore, the expected (mean) cost due to down time is approximately $1,733.
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Note: We could have calculated E(C) = E(10 + 20Y + 4Y 2) from first principles by writing

E(10 + 20Y + 4Y 2) =

∫ 1

0
(10 + 20y + 4y2)× 2(1− y)dy

and then doing this integral. We would get the same answer. In fact, in R,

> integrand = function(y) {(10+20*y+4*y^2)*2*(1-y)}

> integrate(integrand,0,1)

17.33333 with absolute error < 1.9e-13

Getting the variance V (C) is harder if you are doing things by hand. An easy way you could
do this is to write

V (C) = E[(C − µC)2] = E

[(
C − 52

3

)2
]

= E

[(
10 + 20Y + 4Y 2 − 52

3

)2
]

=

∫ 1

0

(
10 + 20y + 4y2 − 52

3

)2

× 2(1− y)dy.

This integral can be calculated numerically in R:

> integrand.2 = function(y) {(10+20*y+4*y^2-(52/3))^2*2*(1-y)}

> integrate(integrand.2,0,1)

29.95556 with absolute error < 3.3e-13

Otherwise, we can do it as follows (the long way). First write

V (C) = E(C2)− [E(C)]2 = E(C2)−
(

52

3

)2

.

Now, we have to get E(C2), the second moment of C. Note that

C2 = (10 + 20Y + 4Y 2)2 = 100 + 400Y 2 + 16Y 4 + 400Y + 80Y 2 + 160Y 3

= 100 + 400Y + 480Y 2 + 160Y 3 + 16Y 4.

Therefore,
E(C2) = 100 + 400E(Y ) + 480E(Y 2) + 160E(Y 3) + 16E(Y 4).

We already know E(Y ) = 1
3 and E(Y 2) = 1

6 . The third moment of Y ∼ beta(1, 2) is

E(Y 3) =

∫ 1

0
y3 × 2(1− y)dy = 2

∫ 1

0
y4−1(1− y)2−1︸ ︷︷ ︸
beta(4,2) kernel

dy =
2Γ(4)Γ(2)

Γ(6)
=

1

10
.

Similarly,

E(Y 4) =

∫ 1

0
y4 × 2(1− y)dy = 2

∫ 1

0
y5−1(1− y)2−1︸ ︷︷ ︸
beta(5,2) kernel

dy =
2Γ(5)Γ(2)

Γ(7)
=

48

720
.

Therefore,

E(C2) = 100 + 400

(
1

3

)
+ 480

(
1

6

)
+ 160

(
1

10

)
+ 16

(
48

720

)
= 330.4.

Finally,

V (C) = E(C2)− [E(C)]2 = 330.4−
(

52

3

)2

≈ 29.96 (100s dollars)2.
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4.130. Here we are being asked to show

V (Y ) =
αβ

(α+ β)2(α+ β + 1)
,

where Y ∼ beta(α, β). In class, we derived

E(Y ) =
α

α+ β
.

Recall that

V (Y ) = E(Y 2)− [E(Y )]2 = E(Y 2)−
(

α

α+ β

)2

.

Therefore, all we have to do is to derive the second moment E(Y 2) and then do some algebra.
Note that

E(Y 2) =

∫ 1

0
y2 × Γ(α+ β)

Γ(α)Γ(β)
yα−1(1− y)β−1dy =

Γ(α+ β)

Γ(α)Γ(β)

∫ 1

0
yα+2−1(1− y)β−1︸ ︷︷ ︸
beta(α+ 2, β) kernel

dy

=
Γ(α+ β)

Γ(α)Γ(β)

Γ(α+ 2)Γ(β)

Γ(α+ β + 2)
.

Now use the recursive property of the gamma function to write

Γ(α+ 2) = (α+ 1)Γ(α+ 1) = (α+ 1)αΓ(α)

and
Γ(α+ β + 2) = (α+ β + 1)Γ(α+ β + 1) = (α+ β + 1)(α+ β)Γ(α+ β).

Therefore, E(Y 2) above becomes

E(Y 2) =
Γ(α+ β)

Γ(α)Γ(β)

(α+ 1)αΓ(α)Γ(β)

(α+ β + 1)(α+ β)Γ(α+ β)
=

(α+ 1)α

(α+ β + 1)(α+ β)
.

Therefore,

V (Y ) = E(Y 2)− [E(Y )]2 =
(α+ 1)α

(α+ β + 1)(α+ β)
−
(

α

α+ β

)2

=
(α+ 1)α(α+ β)− α2(α+ β + 1)

(α+ β + 1)(α+ β)2
(get common denominator).

It therefore suffices to show the numerator of this last expression equals αβ. Note that

(α+ 1)α(α+ β)− α2(α+ β + 1) = (α2 + α)(α+ β)− α3 − α2β − α2

= α3 + α2β + α2 + αβ − α3 − α2β − α2 = αβ. �

4.147. In this problem, we are not given the distribution of Y , the amount of cereal dispensed.
All we know is Y is a random variable (measured in ounces) with mean µ and standard deviation
σ. The phrase “the manufacturer wants Y to be within 1 ounce of µ at least 75% of the time”
means

P (|Y − µ| < 1) ≥ 0.75.
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Because we don’t know the distribution of Y , the best we can do here is to use Tchebysheff’s
result; i.e.,

P (|Y − µ| < kσ) ≥ 1− 1

k2
.

In this inequality, take k = 2 to get

P (|Y − µ| < 2σ) ≥ 1− 1

22
= 0.75.

Therefore, for P (|Y − µ| < 1) ≥ 0.75 to hold, the largest σ can be is σ = 0.5 ounces.

4.157. I have noticed this type of problem appears on Exam P a lot−especially part (b). We
are given that the lifetime of a component Y ∼ exponential(β = 100). Therefore, the pdf and
cdf of Y are, respectively,

fY (y) =


1

100
e−y/100, y > 0

0, otherwise

and

FY (y) =

{
0, y ≤ 0

1− e−y/100, y > 0.

The component is replaced when it fails or at 200 hours, whichever comes first. Therefore, the
time the component is in use is

X = g(Y ) = min{Y, 200} =

{
Y, Y < 200

200, Y ≥ 200.

For example, suppose the component fails at 100 hours. Then y = 100 and x = 100 too.
Suppose the component would have failed at 300 hours. Here, y = 300, but x = 200 because
the component is replaced at 200 hours.

(a) The cdf of X, the time the component is in use, is given by FX(x) = P (X ≤ x). Clearly,
when x ≤ 0, the cdf is zero (i.e., time can only be positive). When 0 < x < 200, the cdf is

FX(x) = P (X ≤ x) = P (Y ≤ x) = FY (x) = 1− e−x/100.

When x ≥ 200, then the cdf is one because the largest X can be is 200. Therefore, the cdf of
X is

FX(x) =


0, x ≤ 0

1− e−x/100, 0 < x < 200

1, x ≥ 200.

A graph of FX(x) appears on the next page; here is the R code I used to produce it:

# Plot CDF

y = seq(0,200,0.1)

cdf = pexp(y,1/100)

plot(y,cdf,type="l",xlab="x",ylab="CDF",xlim=c(0,250),ylim=c(0,1),cex.lab=1.25)

abline(h=0)
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abline(v=0,lty=2)

lines(c(200,250),c(1,1),lty=1)

points(x=200,y=1,pch=19,cex=1.5)

points(x=200,y=1-exp(-2),pch=1,cex=1.5)

(b) To find E(X), first remember that X really is a function of Y ; i.e.,

X = g(Y ) = min{Y, 200} =

{
Y, Y < 200

200, Y ≥ 200.

Therefore, we want to calculate E(X) = E[g(Y )]. Using the definition of mathematical expec-
tation, we have

E[g(Y )] =

∫
R
g(y)fY (y)dy =

∫ ∞
0

min{y, 200} × 1

100
e−y/100dy.

Now, when we are integrating over the region from 0 to 200, then the function min{y, 200} = y.
When we are integrating over the region from 200 to ∞, then min{y, 200} = 200. Therefore,
the last integral can be written as

E[g(Y )] =

∫ 200

0
y × 1

100
e−y/100dy +

∫ ∞
200

200× 1

100
e−y/100dy

=
1

100

∫ 200

0
ye−y/100dy︸ ︷︷ ︸

integral 1

+ 2

∫ ∞
200

e−y/100︸ ︷︷ ︸
integral 2

dy.

You can do the first integral using integration by parts:

u = y du = dy

dv = e−y/100 v = −100e−y/100.
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Therefore, the first integral is

−100ye−y/100
∣∣∣200
y=0

+ 100

∫ 200

0
e−y/100dy = −100

(
200e−2 − 0

)
+ 100

(
−100e−y/100

∣∣∣200
0

)
= −20000e−2 − 10000(e−2 − 1)

= 10000− 30000e−2 ≈ 5939.942.

The second integral is

−100e−y/100
∣∣∣∞
200

= −100(0− e−2) = 100e−2 ≈ 13.534.

Therefore,

E(X) = E[g(Y )] ≈
(

1

100

)
5939.942 + 2(13.534) ≈ 86.47 hours.

4.182. A random variable Y is said to have a lognormal distribution with parameters µ
and σ2 if the pdf of Y is

fY (y) =


1√

2πyσ
e−

1
2( ln y−µ

σ )
2

, y > 0

0, otherwise.

A lognormal random variable arises in the following way:

X ∼ N (µ, σ2) =⇒ Y = eX ∼ lognormal(µ, σ2),

or, equivalently,
Y ∼ lognormal(µ, σ2) =⇒ X = lnY ∼ N (µ, σ2).

We will prove this result in Chapter 6. Although µ and σ2 denote the mean and variance,
respectively, in the normal distribution (for X), they are not the mean and variance for Y ; see
the formulas for E(Y ) and V (Y ) in Exercise 4.183.

Because of the relationship above, calculating probabilities for the lognormal distribution can be
done using the normal distribution after transforming. Suppose Y ∼ lognormal(µ = 4, σ2 = 1).
For part (a),

P (Y ≤ 4) = P (lnY ≤ ln 4) = P (X ≤ ln 4),

where X ∼ N (µ = 4, σ2 = 1). This can be calculated in R using the pnorm function:

> pnorm(log(4),4,1)

[1] 0.004478308

For part (b),

P (Y > 8) = P (lnY > ln 8) = P (X > ln 8) = 1− P (X ≤ ln 8)

is calculated as

> 1-pnorm(log(8),4,1)

[1] 0.9726063
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I used R to graph the pdf of Y ∼ lognormal(µ = 4, σ2 = 1); see the following code:

# Plot PDF

y = seq(0,500,0.1)

pdf = dlnorm(y,4,1)

plot(y,pdf,type="l",xlab="y",ylab="PDF",ylim=c(0,max(pdf)),cex.lab=1.25)

abline(h=0)

Interestingly, R can calculate lognormal probabilities using the plnorm function; note that

> plnorm(4,4,1)

[1] 0.004478308

> 1-plnorm(8,4,1)

[1] 0.9726063

Therefore, there really isn’t a need to transform first, which is what the authors wanted you to
do. R can calculate lognormal probabilities directly.

4.184. We first have to remember the definition of absolute value:

|y| =
{

y, y ≥ 0
−y, y < 0.

Therefore, when we are integrating over [0,∞), we use |y| = y. When we are integrating over
(−∞, 0), we use |y| = −y. The mgf of Y is

mY (t) = E(etY ) =

∫ ∞
−∞

ety × 1

2
e−|y|dy =

∫ 0

−∞

ety

2
eydy +

∫ ∞
0

ety

2
e−ydy

=
1

2

∫ 0

−∞
ey(1+t)dy︸ ︷︷ ︸

integral 1

+
1

2

∫ ∞
0

e−y(1−t)dy︸ ︷︷ ︸
integral 2

.
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The first integral is∫ 0

−∞
ey(1+t)dy =

1

1 + t
ey(1+t)

∣∣∣∣0
−∞

=
1

1 + t

[
1− lim

y→−∞
ey(1+t)

]
t>−1
=

1

1 + t
(1− 0) =

1

1 + t
.

Note that
lim

y→−∞
ey(1+t) = 0

only if 1 + t > 0⇐⇒ t > −1. If 1 + t < 0, then this limit DNE. The second integral is∫ ∞
0

e−y(1−t)dy = − 1

1− t
e−y(1−t)

∣∣∣∣∞
0

= − 1

1− t

[
lim
y→∞

e−y(1−t) − 1

]
t<1
= − 1

1− t
(0− 1) =

1

1− t
.

Note that
lim
y→∞

e−y(1−t) = 0

only if 1− t > 0⇐⇒ t < 1. If 1− t < 0, then this limit DNE.

Therefore, to ensure that both integrals converge, we need −1 < t < 1 (this includes an open
neighborhood about zero). For these values of t, we have

mY (t) =
1

2

(
1

1 + t

)
+

1

2

(
1

1− t

)
=

1

2

[
1− t+ 1 + t

(1 + t)(1− t)

]
=

1

1− t2
.

To find E(Y ), let’s calculate the first derivative:

d

dt
mY (t) = −1(1− t2)−2 × (−2t) =

2t

1− t2
.

Therefore,

E(Y ) =
d

dt
mY (t)

∣∣∣∣
t=0

=
2(0)

1− (0)2
= 0.

4.186. A random variable Y is said to have a Weibull distribution with parameters m and
α if the pdf of Y is

fY (y) =


m

α
ym−1e−y

m/α, y > 0

0, otherwise.

Note that when m = 1, this pdf reduces to an exponential pdf (with mean α). Interesting!
Therefore, we can think of the Weibull(m,α) distribution as a generalization of the exponential.

When m = 2, the pdf of Y is

fY (y) =


2y

α
e−y

2/α, y > 0

0, otherwise.

The mean of Y is

E(Y ) =

∫
R
yfY (y)dy =

∫ ∞
0

2y2

α
e−y

2/αdy.

In this last integral, let
u = y2 =⇒ du = 2ydy.
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Therefore, the last integral becomes∫ ∞
0

2y2

α
e−u/α

du

2y
=

∫ ∞
0

√
u

α
e−u/αdu =

1

α

∫ ∞
0

u
3
2
−1e−u/αdu =

1

α
× Γ

(
3

2

)
α3/2

=
√
α

(
1

2

)
Γ

(
1

2

)
=

√
πα

2
.

Recall that Γ(1/2) =
√
π, which we will prove coming up! Therefore,

E(Y ) =

√
πα

2
.

To find V (Y ), we will first find E(Y 2) and use the variance computing formula. Note that

E(Y 2) =

∫
R
y2fY (y)dy =

∫ ∞
0

2y3

α
e−y

2/αdy.

In this last integral, let
u = y2 =⇒ du = 2ydy.

Therefore, the last integral becomes∫ ∞
0

2y3

α
e−u/α

du

2y
=

∫ ∞
0

u

α
e−u/αdu = E(U),

where U ∼ exponential(α). To see why this is true, note that (1/α)e−u/α is the exponential pdf
with mean α, and we are integrating u×(1/α)e−u/α over (0,∞). Therefore, E(Y 2) = E(U) = α.
Using the variance computing formula, we have

V (Y ) = E(Y 2)− [E(Y )]2 = α−
(√

πα

2

)2

= α− πα

4
= α

(
1− π

4

)
.

4.187. See Exercise 4.186. When m = 2 and α = 10, the pdf of Y is

fY (y) =


2y

10
e−y

2/10, y > 0

0, otherwise.

I used the following code to graph the pdf of Y ; see next page.

# Plot PDF

y = seq(0,10,0.1)

pdf = dweibull(y,shape=2,scale=10^(1/2))

plot(y,pdf,type="l",xlab="y",ylab="PDF",ylim=c(0,max(pdf)),cex.lab=1.25)

abline(h=0)

# Shade in P(Y>5) in part (a)

x = seq(5,10,0.001)

y = dweibull(x,shape=2,scale=10^(1/2))

polygon(c(5,x,10),c(0,y,0),col="lightblue")

points(x=5,y=0,pch=19,cex=1.5)
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(a) ”Exceeds 5000 hours” means “Y > 5.” We can find P (Y > 5) by integrating the pdf; note
that

P (Y > 5) =

∫ ∞
5

2y

10
e−y

2/10dy.

In this integral, let
u = y2 =⇒ du = 2ydy.

Therefore,

P (Y > 5) =

∫ ∞
25

2y

10
e−u/10

du

2y
=

∫ ∞
25

1

10
e−u/10du

=
1

10

(
−10e−u/10

∣∣∣∞
25

)
= e−u/10

∣∣∣25
∞

= e−25/10 − lim
u→∞

e−u/10︸ ︷︷ ︸
= 0

= e−2.5 ≈ 0.082.

(b) Here we use the binomial distribution. Let

X = number of resistors that fail before 5000 hours of use.

Assuming the resistors are independent, each with the same probability of failing before 5000
hours of use (i.e., 1− 0.082 = 0.918), we have X ∼ b(n = 3, p = 0.918). The probability exactly
one fails before 5000 hours is

P (X = 1) =

(
3

1

)
(0.918)1(1− 0.918)2 ≈ 0.019.

In R,

> dbinom(1,3,0.918)

[1] 0.0185179
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4.196. The hint is helpful. Note that

y =
x2

2
⇐⇒ x =

√
2y =⇒ dx =

1

2
(2y)−1/2(2)dy =

dy√
2y
.

Therefore,

Γ(1/2) =

∫ ∞
y=0

y−1/2e−ydy =

∫ ∞
x=0

1
√
y
e−x

2/2
√

2ydx

=
√

2

∫ ∞
x=0

e−x
2/2dx

=
√

2
√

2π

∫ ∞
x=0

1√
2π
e−x

2/2dx︸ ︷︷ ︸
= 1/2

=
2
√
π

2
=
√
π.

Note that ∫ ∞
x=0

1√
2π
e−x

2/2dx

is the integral of the standard normal pdf over (0,∞). We know∫ ∞
−∞

1√
2π
e−x

2/2dx = 1.

Because the standard normal pdf is symmetric about x = 0, the median is zero; i.e., 1/2 the
area is to the left of zero and 1/2 area is to the right.
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