1. (a) The Kolmogorov axioms are for the set function P:

1. $P(A) \geq 0$ for all events A.
2. $P(S) = 1$.
3. Suppose $A_1, A_2, ..., $ are pairwise mutually exclusive events; i.e.,

$$A_i \cap A_j = \emptyset \ \forall i \neq j.$$

Then

$$P\left(\bigcup_{i=1}^{\infty} A_i \right) = \sum_{i=1}^{\infty} P(A_i) \quad \text{“countable additivity”}.$$

(b) Mutual independence requires

$$P(A_1 \cap A_2 \cap \cdots \cap A_k) = P(A_1)P(A_2)\cdots P(A_k)$$

for any subcollection of events $A_1, A_2, ..., A_k$.

Note: Pairwise independence; i.e., $P(A_i \cap A_j) = P(A_i)P(A_j)$ is not strong enough. The equation above must hold for any subcollection; i.e., for any 2 events, for any 3 events, and so on. It must also hold for all n events; i.e., $P(A_1 \cap A_2 \cap \cdots \cap A_n) = P(A_1)P(A_2)\cdots P(A_n)$.

2. From the LOTP, we know

$$P(A) = P(A|B)P(B) + P(A|\bar{B})P(\bar{B}).$$

Because $P(B) = 1$ by assumption, we know $P(\bar{B}) = 1 - P(B) = 0$. Therefore,

$$P(A) = P(A|B)P(B) = P(A|B)$$

because $P(B) = 1$. This means A and B are independent events.

(b) If $A \subset B$, then we can write

$$B = A \cup (\bar{A} \cap B).$$

Note that $\bar{A} \cap B$ denotes all outcomes in B but not in A. Furthermore A and $\bar{A} \cap B$ are mutually exclusive. Therefore, by Axiom 3 (countable additivity), we have

$$P(B) = P(A) + P(\bar{A} \cap B) \implies P(\bar{A} \cap B) = P(B) - P(A).$$

(c) A and B are mutually exclusive means $A \cap B = \emptyset$. Using the definition of conditional probability,

$$P(A|A \cup B) = \frac{P(A \cap (A \cup B))}{P(A \cup B)}.$$

Now, $A \subset A \cup B \implies A \cap (A \cup B) = A$. Also,

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = P(A) + P(B),$$

because $P(A \cap B) = P(\emptyset) = 0$ (i.e., A and B are mutually exclusive). Therefore,

$$P(A|A \cup B) = \frac{P(A)}{P(A) + P(B)}$$

as claimed.
3. Define the following events:

\[A = \{ \text{patient dies} \} \]
\[B_1 = \{ \text{patient classified critical} \} \]
\[B_2 = \{ \text{patient classified serious} \} \]
\[B_3 = \{ \text{patient classified stable} \} \]

We are given
\[P(B_1) = 0.20 \]
\[P(B_2) = 0.30 \]
\[P(B_3) = 0.50 \]

\[\sum \text{to 1 } (i.e., B_1, B_2, B_3 \text{ partition } S) \]

We are also given
\[P(A|B_1) = 0.30 \]
\[P(A|B_2) = 0.10 \]
\[P(A|B_3) = 0.01 \]

(a) Use LOTP:

\[P(A) = P(A|B_1)P(B_1) + P(A|B_2)P(B_2) + P(A|B_3)P(B_3) \]
\[= 0.30(0.20) + 0.10(0.30) + 0.01(0.50) = 0.095. \]

(b) Use Bayes’ Rule. We want \(P(B_1|A) \).

\[P(B_1|A) = \frac{P(A \cap B_1)}{P(A)} = \frac{P(A|B_1)P(B_1)}{P(A)} = \frac{0.30(0.20)}{0.095} \approx 0.632. \]

4. (a) One sample point looks like this:

\[(\begin{array}{cccc} 3 & 1 & 4 & 2 \\ E1 & E2 & E3 & E4 \end{array}) \]

This would mean that

- invitation to friend 3 went to envelope 1 (E1)
- invitation to friend 1 went to envelope 2 (E2)
- invitation to friend 4 went to envelope 3 (E3)
- invitation to friend 2 went to envelope 4 (E4).

How many sample points? This is equal to the number of ways to permute the four distinct objects “1,” “2,” “3,” and “4.” That is, there are

\[4! = 24 \text{ different sample points in } S. \]

The sample space consists of the 24 outcomes (sample points) like the one above.

(b) At first, one might think that \(Y \) can be 0, 1, 2, 3, or 4. Let’s calculate \(P(Y = 4) \). For \(\{Y = 4\} \) to occur, every invitation must match its envelope. This corresponds to the outcome

\[(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ E1 & E2 & E3 & E4 \end{array}) \]

There is only 1 such outcome; hence, \(P(Y = 4) = 1/24 \), assuming all 24 outcomes in \(S \) are equally likely.
We should quickly see that \(P(Y = 3) = 0 \). To see why, the event \(\{Y = 3\} \) means there were “3 matches.” If there were 3 matches, the last envelope/invitation must match too (which would be 4 matches). Therefore, \(\{Y = 3\} \) cannot occur and hence \(P(Y = 3) = 0 \).

Next, \(P(Y = 2) \). This means there are two “matches;” something like

\[
\begin{array}{cccc}
E_1 & E_2 & E_3 & E_4 \\
1 & & 3 & \\
& 2 & & \\
& & & 4
\end{array}
\]

There are \(\binom{4}{2} = 6 \) ways to choose 2 envelopes whose invitations match. Once these 2 envelopes/invitations matches are selected, the remaining invitations must be put in the wrong envelope. Therefore, there are 6 ways the event \(\{Y = 2\} \) can occur and thus \(P(Y = 2) = 6/24 \), assuming all 24 outcomes in \(S \) are equally likely.

Next, \(P(Y = 1) \). Exactly 1 match. Use the basic rule of counting:

\[
\begin{align*}
 n_1 &= \text{number of ways to select 1 envelope/invitation match} = 4 \\
 n_2 &= \text{number of ways 2nd invitation can be assigned to wrong envelope} = 2.
\end{align*}
\]

The third and fourth invitations must be assigned to the wrong envelope as well. Therefore, the number of ways \(\{Y = 1\} \) can occur is \(n_1 \times n_2 = 8 \). Therefore, \(P(Y = 1) = 8/24 \), assuming all 24 outcomes in \(S \) are equally likely.

Finally, we can get \(P(Y = 0) \) by subtraction. We know

\[
P(Y = 0) + P(Y = 1) + P(Y = 2) + P(Y = 4) = 1.
\]

Therefore,

\[
P(Y = 0) = 1 - \frac{8}{24} - \frac{6}{24} - \frac{1}{24} = \frac{9}{24}.
\]

The pmf of \(Y \) can be written as

<table>
<thead>
<tr>
<th>(y)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_Y(y))</td>
<td>9/24</td>
<td>8/24</td>
<td>6/24</td>
<td>1/24</td>
</tr>
</tbody>
</table>

5. (a) \(Y \) is a discrete random variable with four possible values \((0, 2, 4, \text{ and } 10) \). We know

\[
p_Y(0) + p_Y(2) + p_Y(4) + p_Y(10) = 1 \implies 0.8 + 2c + 4c + 10c = 1 \implies 16c = 0.2 \implies c = \frac{1}{80}.
\]

The pmf of \(Y \) can be written as

<table>
<thead>
<tr>
<th>(y)</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_Y(y))</td>
<td>0.8</td>
<td>2/80</td>
<td>4/80</td>
<td>10/80</td>
</tr>
</tbody>
</table>

The expected loss is

\[
E(Y) = 0(0.8) + 2 \left(\frac{2}{80} \right) + 4 \left(\frac{4}{80} \right) + 10 \left(\frac{10}{80} \right) = \frac{120}{80} = 1.5.
\]
(b) Note the support is \(R = \{0, 2, 4, 10\} \). The mgf of \(Y \) is

\[
m_Y(t) = E(e^{ty}) = \sum_{y \in R} e^{ty} p_Y(y)
\]
\[
= e^{t(0)} \left(0.8 \right) + e^{t(2)} \left(\frac{2}{80} \right) + e^{t(4)} \left(\frac{4}{80} \right) + e^{t(10)} \left(\frac{10}{80} \right)
\]
\[
= 0.8 + \frac{2}{80} e^{2t} + \frac{4}{80} e^{4t} + \frac{10}{80} e^{10t}.
\]

6. (a) The mgf of \(Y \) is

\[
m_Y(t) = E(e^{ty}) = \sum_{y=0}^{\infty} e^{ty} p_Y(y) = \sum_{y=0}^{\infty} e^{ty} \left(\frac{1}{4} \right)^y = \frac{3}{4} \sum_{y=0}^{\infty} \left(\frac{e^t}{4} \right)^y.
\]

The last sum is an infinite geometric sum with common ratio \(r = e^t/4 \). Provided that \(r < 1 \); i.e.,
\[
e^t/4 < 1 \iff t < \ln 4
\]

this sum converges and hence \(m_Y(t) \) exists. We have

\[
m_Y(t) = \frac{3}{4} \left(\frac{1}{1 - e^t/4} \right) = \frac{3}{4} \left(\frac{4}{4 - e^t} \right) = \frac{3}{4 - e^t}.
\]

(b) To take derivatives, write \(m_Y(t) = 3(4 - e^t)^{-1} \). The first derivative is

\[
\frac{d}{dt} m_Y(t) = 3(-1)(4 - e^t)^{-2}(-e^t) = 3e^t(4 - e^t)^{-2}.
\]

Thus,

\[
E(Y) = \left. \frac{d}{dt} m_Y(t) \right|_{t=0} = 3e^0(4 - e^0)^{-2} = \frac{1}{3}.
\]

The second derivative is

\[
\frac{d^2}{dt^2} m_Y(t) = \frac{d}{dt} \left(3e^t(4 - e^t)^{-2} \right) = 3e^t(4 - e^t)^{-2} + 3e^t(-2)(4 - e^t)^{-3}(-e^t)
\]
\[
= \frac{3e^t}{(4 - e^t)^2} + \frac{6e^{2t}}{(4 - e^t)^3}.
\]

Thus,

\[
E(Y^2) = \left. \frac{d^2}{dt^2} m_Y(t) \right|_{t=0} = \frac{3e^0}{(4 - e^0)^2} + \frac{6e^{2(0)}}{(4 - e^0)^3} = \frac{3}{4} + \frac{6}{27} = \frac{15}{27}.
\]

Finally, from the variance computing formula,

\[
V(Y) = E(Y^2) - [E(Y)]^2 = \frac{15}{27} - \left(\frac{1}{3} \right)^2 = \frac{4}{9}.
\]