1. Compute the following limits:

(a)
$$\lim_{x\to 2} \frac{x^2-4}{x-2}$$
 (b) $\lim_{x\to 0} \frac{x}{\sin x}$ (c) $\lim_{x\to \infty} x^2 e^{-x}$

(b)
$$\lim_{x\to 0} \frac{x}{\sin x}$$

(c)
$$\lim_{x\to\infty} x^2 e^{-x}$$

2. Find all values of x satisfying f(x) = 0:

(a)
$$f(x) = x^2 + 2x + 2$$

(b)
$$f(x) = 2^{x+2} - 3^{x-1}$$

(c)
$$f(x) = \ln(4x - 7)$$

3. Compute the following integrals:

(a)
$$\int_0^1 x^2 (1-x) dx$$

(a)
$$\int_0^1 x^2 (1-x) dx$$
 (b) $\int_0^{10} \frac{1}{2} e^{-x/2} dx$ (c) $\int_1^e \frac{1}{x} dx$

(c)
$$\int_{1}^{e} \frac{1}{x} dx$$

4. Find the derivatives of the following functions:

(a)
$$f(x) = e^{ax^2 + bx + c}$$

(b)
$$g(u) = u \ln u - u$$

(c)
$$h(y) = \ln(y^2 - 4y)$$

5. Compute the following derivatives:

(a)
$$\frac{d^3}{dx^3} x e^x$$
 (b) $\frac{d^2}{dt^2} e^{t+2t^2}$

6. Find the following sums:

(a)
$$\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n$$

(b)
$$\sum_{i=1}^{\infty} \left(\frac{1}{10}\right)^{i}$$

(b)
$$\sum_{j=1}^{\infty} \left(\frac{1}{10}\right)^{j-1}$$

(a)
$$\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n$$
 (b) $\sum_{j=1}^{\infty} \left(\frac{1}{10}\right)^j$ (b) $\sum_{j=1}^{\infty} \left(\frac{1}{10}\right)^{j-1}$ (d) $\sum_{y=1}^9 \frac{2}{3} \left(\frac{1}{3}\right)^{y-1}$

7. Evaluate the following double integrals:

(a)
$$\int_0^1 \int_0^x 2xy^2 dydx$$
 (b) $\int_u^1 \int_{u/y_2}^1 1dy_1dy_2$, $0 < u < 1$

8. Compute the following integrals:

(a)
$$\int_0^\infty x e^{-x} \ dx$$

(b)
$$\int_{0}^{\infty} x^{2}e^{-x} dx$$

(a)
$$\int_0^\infty x e^{-x} dx$$
 (b) $\int_0^\infty x^2 e^{-x} dx$ (c) $\int_0^5 x^2 e^{-x/2} dx$

9. Evaluate the following:

(a)
$$\lim_{x \to 0} xe^x$$

(b)
$$\lim_{n \to \infty} xe^n$$

(c)
$$\lim_{x\to 0} xe^{-x}$$

(a)
$$\lim_{x\to 0} xe^x$$
 (b) $\lim_{x\to \infty} xe^x$ (c) $\lim_{x\to 0} xe^{-x}$ (d) $\lim_{x\to \infty} xe^{-x}$

- 10. Suppose that $f(x) = 4x^2 1$. Write a formula for f^{-1} , the inverse of f. Graph fand f^{-1} on the same set of axes. Do the same with $q(x) = e^{-x}$ and $h(x) = \ln(x-1)$.
- 11. Compute the following limits:

(a)
$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$
 (b) $\lim_{n \to \infty} \left(1 - \frac{2}{n} \right)^n$

- 12. Discuss the increasing/decreasing behavior of the functions (a) $f(x) = 1 e^{-x/2}$ and
- (b) $f(x) = x^3 e^{-x}$. Restrict attention to x > 0. Also, discuss concavity.
- 13. Compute the following sums:

(a)
$$\sum_{j=0}^{\infty} \frac{2^j}{j!}$$
 (b) $\sum_{j=1}^{\infty} \frac{1}{j}$ (c) $\sum_{j=0}^{\infty} \left(\frac{|x|}{1+|x|}\right)^j$

14. Compute the following integrals:

(a)
$$\int_0^\infty \int_x^{x+1} e^{-y} dy dx$$
 (b) $\int_0^1 \int_0^1 y_1 e^{-(y_1 + y_2)} dy_2 dy_1$

15. Find the derivatives of the following functions and evaluate their derivatives at t=0:

(a)
$$f(t) = (0.3 + 0.7e^t)^{10}$$
 (b) $f(t) = e^{10t + t^2/2}$

(b)
$$f(t) = e^{10t + t^2/2}$$

16. Compute the following integrals:

(a)
$$\int_0^1 e^x \sqrt{1 - e^x} dx$$
 (b) $\int_0^\infty y^3 e^{-y^4/2} dy$

- 17. Find the Taylor Series expansion of $f(x) = \sin x$ about x = 0. Repeat for $g(x) = e^x$.
- 18. Write $(x+y)^6$ in its binomial expansion.
- 19. Find both partial derivatives of $f(x,y) = x \ln(xy)$. Also, compute the Hessian of f(x,y); i.e., the matrix of second partial derivatives.
- 20. Show that

$$\sum_{x=0}^{\infty} \frac{1}{(x+1)(x+2)} = 1 \quad \text{and} \quad \sum_{x=0}^{\infty} \frac{x}{(x+1)(x+2)} = +\infty$$