6.34. A Rayleigh random variable \(Y \) has pdf
\[
f_Y(y) = \begin{cases}
\frac{2y}{\theta} e^{-y^2/\theta}, & y > 0 \\
0, & \text{otherwise}
\end{cases}
\]
Note that this pdf arises when
\[
f_Y(y) = \begin{cases}
\frac{m}{\theta} y^{m-1} e^{-y^m/\theta}, & y > 0 \\
0, & \text{otherwise}
\end{cases}
\]
and \(m = 2 \). In other words, the Rayleigh(\(\theta \)) distribution is a special case of the Weibull(\(m, \theta \)) distribution with \(m = 2 \). We proved the general result
\[
Y \sim \text{Weibull}(m, \theta) \implies U = h(Y) = Y^m \sim \text{exponential}(\theta)
\]
in Exercise 6.26 (HW1) by using the transformation method. Therefore, arguing
\[
Y \sim \text{Rayleigh}(\theta) \implies U = h(Y) = Y^2 \sim \text{exponential}(\theta)
\]
is a special case of this general argument when \(m = 2 \). For fun, let’s prove this result (when \(m = 2 \)) by using the cdf technique and the mgf technique (in other words, all three methods “work” in this instance).

CDF technique: Let’s first derive the cdf of \(Y \sim \text{Rayleigh}(\theta) \). When \(y \leq 0 \), the cdf
\[
F_Y(y) = \int_{-\infty}^{y} f_Y(t) dt = \int_{-\infty}^{y} 0 dt = 0.
\]
For \(y > 0 \), the cdf
\[
F_Y(y) = \int_{-\infty}^{y} f_Y(t) dt = \int_{-\infty}^{0} 0 dt + \int_{0}^{y} \frac{2t}{\theta} e^{-t^2/\theta} dt = \int_{0}^{y} \frac{2t}{\theta} e^{-t^2/\theta} dt.
\]
In the last integral, let
\[
u = t^2 \implies du = 2t dt.
\]
The limits on the integral change under this transformation. Note that
\[
t : 0 \to y \implies u : 0 \to y^2.
\]
Therefore, for \(y > 0 \),
\[
F_Y(y) = \int_{0}^{y} \frac{2t}{\theta} e^{-t^2/\theta} dt = \int_{0}^{y^2} \frac{1}{\theta} e^{-u/\theta} du
\]
\[
= \int_{0}^{y^2} \frac{1}{\theta} e^{-u/\theta} du
\]
\[
= \frac{1}{\theta} \left(-\theta e^{-u/\theta} \right)_{0}^{y^2} = e^{-u/\theta} \bigg|_{0}^{y^2} = 1 - e^{-y^2/\theta}.
\]
Summarizing,
\[
F_Y(y) = \begin{cases}
0, & y \leq 0 \\
1 - e^{-y^2/\theta}, & y > 0
\end{cases}
\]
We are now ready to derive the cdf of \(U = Y^2 \). For \(u > 0 \), it is
\[
F_U(u) = P(U \leq u) = P(Y^2 \leq u) = P(Y \leq \sqrt{u}) = F_Y(\sqrt{u}) = 1 - e^{-（\sqrt{u}/\theta)^2} = 1 - e^{-u/\theta}.
\]
Summarizing,
\[
F_U(u) = \begin{cases}
0, & u \leq 0 \\
1 - e^{-u/\theta}, & u > 0.
\end{cases}
\]
We recognize this as the cdf of \(U \sim \text{exponential}(\theta) \). Therefore, we are done.

MGF technique: We derive the mgf of \(U = Y^2 \) and show that it matches the mgf of an exponential random variable with mean \(\theta \). The mgf of \(U \) is
\[
m_U(t) = E(e^{tU}) = E(e^{tY^2}) = \int_0^{\infty} e^{ty^2} \times \frac{2}{\theta} e^{-y^2/\theta} dy = \int_0^{\infty} \frac{2y}{\theta} e^{ty^2-y^2/\theta} dy.
\]
In the exponent of \(e^{ty^2-y^2/\theta} \), write
\[
ty^2 - \frac{y^2}{\theta} = -y^2 \left(\frac{1}{\theta} - t \right) = -y^2 \left(\frac{1}{\theta} - t \right)^{-1} = -y^2/\eta,
\]
where \(\eta = (\frac{1}{\theta} - t)^{-1} \). Therefore, the last integral becomes
\[
m_U(t) = \int_0^{\infty} \frac{2y}{\theta} e^{-y^2/\eta} dy = \int_0^{\infty} \frac{2y}{\theta} e^{-y^2/\eta} dy.
\]
Now, let
\[
u = y^2 \implies du = 2y dy.
\]
The limits on the integral do not change under this transformation. Note that
\[
y : 0 \to \infty \implies u : 0 \to \infty.
\]
Therefore,
\[
m_U(t) = \int_0^{\infty} \frac{2y}{\theta} e^{-u/\eta} du = \frac{1}{\theta} \eta^{-1}(e^{-u/\eta}) \bigg|_0^\infty = \eta \left(\frac{1}{\theta} - t \right) = \frac{\eta}{\theta},
\]
provided that
\[
\eta > 0 \iff t < \frac{1}{\theta}.
\]
Therefore, for \(t < 1/\theta \), we have
\[
m_U(t) = \frac{1}{\theta} \left(\frac{1}{\theta} - t \right) = \frac{\theta}{1 - \theta t} = \frac{1}{1 - \theta t}.
\]
We recognize this mgf as the mgf of an exponential random variable with mean \(\theta \). Because mgfs are unique, we know \(U \sim \text{exponential}(\theta) \).
(b) In HW1, we derived the mean and variance of $Y \sim \text{Weibull}(m, \theta)$ to be

$$E(Y) = \theta \frac{1}{m} \Gamma \left(\frac{1}{m} + 1 \right)$$

$$V(Y) = \theta \frac{2}{m} \left\{ \Gamma \left(\frac{2}{m} + 1 \right) - \left[\Gamma \left(\frac{1}{m} + 1 \right) \right]^2 \right\}.$$

Therefore, for $Y \sim \text{Raleigh}(\theta)$, put in $m = 2$ and we get

$$E(Y) = \theta \frac{1}{2} \Gamma \left(\frac{3}{2} \right) = \theta \frac{1}{2} \Gamma \left(\frac{1}{2} \right) = \frac{\sqrt{\pi \theta}}{2}.$$

and

$$V(Y) = \theta \left\{ \Gamma \left(\frac{2}{2} + 1 \right) - \left[\Gamma \left(\frac{1}{2} + 1 \right) \right]^2 \right\} = \theta \left(\Gamma(2) - \left[\Gamma \left(\frac{3}{2} \right) \right]^2 \right) = \theta \left(1 - \frac{\pi}{4} \right).$$

6.40. We know that $Y \sim \mathcal{N}(0, 1) \implies Y^2 \sim \chi^2(1)$. Therefore, Y_1^2 and Y_2^2 are independent random variables, both distributed as $\chi^2(1)$. Recall the $\chi^2(1)$ mgf is given by

$$m_{Y^2}(t) = \left(\frac{1}{1 - 2t} \right)^{1/2},$$

for $t < 1/2$. Therefore, the mgf of $U = Y_1^2 + Y_2^2$ is

$$m_U(t) = m_{Y_1^2}(t)m_{Y_2^2}(t) = \left(\frac{1}{1 - 2t} \right)^{1/2} \left(\frac{1}{1 - 2t} \right)^{1/2} = \left(\frac{1}{1 - 2t} \right)^{2/2}.$$

We recognize this mgf as the mgf of a χ^2 random variable with 2 degrees of freedom. Because mgfs are unique, we know $U = Y_1^2 + Y_2^2 \sim \chi^2(2)$; i.e., the degrees of freedom simply “add.”

6.42. The weight capacity $Y_1 \sim \mathcal{N}(5000, 300^2)$. The load $Y_2 \sim \mathcal{N}(4000, 400^2)$. The elevator will be overloaded when $Y_1 < Y_2$; i.e., when $U = Y_1 - Y_2 < 0$. Therefore, we want to find $P(Y_1 < Y_2) = P(U < 0)$.

In Example 6.13 (notes), we proved that linear combinations of mutually independent normal random variables are normally distributed; i.e.,

$$U = \sum_{i=1}^{n} a_i Y_i \sim \mathcal{N} \left(\sum_{i=1}^{n} a_i \mu_i, \sum_{i=1}^{n} a_i^2 \sigma_i^2 \right).$$

Note that

$$U = Y_1 - Y_2$$

is a special case of the linear combination above with $n = 2$, $a_1 = 1$, and $a_2 = -1$. Therefore, we know $U = Y_1 - Y_2$ is normally distributed with mean

$$a_1 \mu_1 + a_2 \mu_2 = 1(5000) + (-1)(4000) = 1000$$
and variance
\[a_1^2\sigma_1^2 + a_2^2\sigma_2^2 = 1^2(300^2) + (-1)^2(400^2) = 500^2. \]
That is, \(U \sim \mathcal{N}(1000, 500^2) \). We can calculate \(P(U < 0) \) in R; note that
\[
> \text{pnorm}(0, 1000, 500)
[1] 0.02275013
\]
Therefore,
\[
P(Y_1 < Y_2) = P(U < 0) \approx 0.0228.
\]
The pdf of \(U \sim \mathcal{N}(1000, 500^2) \) is shown at the top of this page with the probability \(P(U < 0) \) shown shaded.

6.45. We are given
\[
Y_1 = \text{amount of sand (in yards)} \sim \mathcal{N}(10, 0.5^2) \\
Y_2 = \text{amount of cement (in 100s lbs)} \sim \mathcal{N}(4, 0.2^2).
\]
The total cost is
\[
U = 100 + 7Y_1 + 3Y_2.
\]
We are told to assume that \(Y_1 \) and \(Y_2 \) are independent. Under this assumption,
\[
7Y_1 + 3Y_2
\]
is a linear combination of independent normally distributed random variables with \(n = 2, a_1 = 7, \) and \(a_2 = 3 \). Therefore, it too is normally distributed with mean
\[
a_1\mu_1 + a_2\mu_2 = 7(10) + 3(4) = 82
\]
and variance
\[a_1^2 \sigma_1^2 + a_2^2 \sigma_2^2 = 7^2(0.5^2) + 3^2(0.2^2) = 12.61. \]
That is,
\[7Y_1 + 3Y_2 \sim \mathcal{N}(82, 12.61). \]
Now, the additive constant 100 merely shifts the \(\mathcal{N}(82, 12.61) \) distribution 100 units to the right; therefore,
\[U = 100 + 7Y_1 + 3Y_2 \sim \mathcal{N}(182, 12.61). \]
\textbf{Note:} If you dislike the previous argument, you can derive the mgf of \(U = 100 + 7Y_1 + 3Y_2 \) directly and show that it matches the mgf of a \(\mathcal{N}(182, 12.61) \) random variable. We do this now:

\[
m_U(t) = E(e^{tU}) = E[e^{(100+7Y_1+3Y_2)t}] = E(e^{100t}e^{7tY_1}e^{3tY_2}) = e^{100t}m_{Y_1}(7t)m_{Y_2}(3t),
\]
where \(m_{Y_1}(t) \) is the \(\mathcal{N}(10, 0.5^2) \) mgf and where \(m_{Y_2}(t) \) is the \(\mathcal{N}(4, 0.2^2) \) mgf. We have

\[
m_{Y_1}(t) = \exp\left[10t + \frac{(0.5^2)t^2}{2}\right] \implies m_{Y_1}(7t) = \exp\left[70t + \frac{49(0.5^2)t^2}{2}\right]
\]
and

\[
m_{Y_2}(t) = \exp\left[4t + \frac{(0.2^2)t^2}{2}\right] \implies m_{Y_1}(3t) = \exp\left[12t + \frac{9(0.2^2)t^2}{2}\right]
\]
Therefore,

\[
m_U(t) = e^{100t}m_{Y_1}(7t)m_{Y_2}(3t) = \exp(100t)\exp\left[70t + \frac{49(0.5^2)t^2}{2}\right]\exp\left[12t + \frac{9(0.2^2)t^2}{2}\right]
\]
\[
= \exp\left\{182t + \frac{49(0.5^2) + 9(0.2^2)}{2}\right\}
\]
\[
= \exp\left(182t + \frac{12.61t^2}{2}\right).
\]
We recognize this as the mgf of a normal random variable with mean \(\mu = 182 \) and variance \(\sigma^2 = 12.61 \). Because mgfs are unique, we know that \(U \sim \mathcal{N}(182, 12.61) \). Now, the bidding problem being asked is this. What should the manager bid on the job so that the total cost \(U \) will exceed the bid with probability 0.01? Let \(b \) denote the bid the manager makes. S/he wants to select \(b \) so that

\[P(U > b) = 0.01. \]
In other words, s/he wants to bid the 99th percentile (\(p = 0.99 \) quantile) of \(U \sim \mathcal{N}(182, 12.61) \). In R, we have

\[
> \text{qnorm}(0.99, 182, \text{sqrt}(12.61))
\]
\[
[1] 190.261
\]
Therefore, if s/he sets the bid at \(b = 190.261 \), then the total cost \(U \) will exceed this value with probability 0.01. See the figure at the top of the next page.
Remark: We are asked to comment on whether the amount of sand required and the amount of cement required for the construction job are independent; i.e., if it is reasonable to assume Y_1 and Y_2 are independent. On practical grounds, they probably aren’t; in fact, we would expect them to be positively correlated (i.e., the more sand required for the construction job, the more cement will be required). Therefore, the solution we obtained ($b = 190.261$) isn’t 100 percent correct if Y_1 and Y_2 are in fact correlated. However, we made the independence assumption so that we could get a solution. This is commonly done in statistical problems—we sometimes are forced to make simplifying assumptions so that we can get an answer. If we wanted to solve $P(U > b) = 0.01$ while allowing for dependence between Y_1 and Y_2, we would have to know the covariance of Y_1 and Y_2. If we knew this, then we could recalculate the distribution of U. It is still normal with mean $E(U) = 182$, but the variance would change as follows:

$$V(U) = V(100 + 7Y_1 + 3Y_2) = V(7Y_1 + 3Y_2) = 49V(Y_1) + 9V(Y_2) + 2(7)(3) \text{Cov}(Y_1, Y_2).$$

6.48. In this problem, we are given $Y_1 \sim \mathcal{N}(0, 1)$, $Y_2 \sim \mathcal{N}(0, 1)$, and Y_1 and Y_2 are independent. We want to find the distribution of

$$U = \sqrt{Y_1^2 + Y_2^2}.$$

From Exercise 6.40, we already know

$$V = Y_1^2 + Y_2^2 \sim \chi^2(2).$$

Therefore, all we have to do is find the pdf of $U = h(V) = \sqrt{V}$, where $V \sim \chi^2(2) \overset{d}{=} \text{gamma}(1, 2)$.

The pdf of V, for $v > 0$, is

$$f_V(v) = \frac{1}{\Gamma(1/2)^2}v^{1/2-1}e^{-v/2} = \frac{1}{2}e^{-v/2},$$

which is the exponential(2) pdf with mean $\beta = 2$. In other words, the $\chi^2(2)$ pdf, the gamma(1, 2) pdf, and the exponential(2) pdf are all the same pdf! Interesting!!
To find the pdf of \(U = h(V) = \sqrt{V} \), we will use the transformation method. Note that
\[
v > 0 \implies u = \sqrt{v} > 0.
\]
Therefore, the support of \(U \) is \(R_U = \{u : u > 0\} \). Also, the function \(u = h(v) = \sqrt{v} \) is 1:1 over \(R_V = \{v : v > 0\} \), the support of \(V \). Therefore, we can use the transformation method.

The inverse transformation is found as follows:
\[
u = h(v) = \sqrt{v} \implies v = u^2 = h^{-1}(u).
\]
Also, the derivative of the inverse transformation is
\[
\frac{d}{du}h^{-1}(u) = \frac{d}{du}u^2 = 2u.
\]
Therefore, for \(u > 0 \), the pdf of \(U \) is
\[
f_U(u) = f_V(h^{-1}(u)) \left| \frac{d}{du}h^{-1}(u) \right| = \frac{1}{2}e^{-u^2/2} \times |2u| = ue^{-u^2/2}.
\]

Summarizing, the pdf of \(U = h(V) = \sqrt{V} \) is
\[
f_U(u) = \begin{cases}
ue^{-u^2/2}, & u > 0 \\
0, & \text{otherwise}.
\end{cases}
\]

Comparing this pdf to the general form of the Weibull(\(m, \theta \)) pdf
\[
f_U(u) = \begin{cases}
\frac{m}{\theta}u^{m-1}e^{-u^m/\theta}, & u > 0 \\
0, & \text{otherwise},
\end{cases}
\]
we see that \(U \sim \text{Weibull}(m = 2, \theta = 2) \). This pdf is shown above.
6.52. (a) We did this part in Example 6.11 of the notes. Suppose \(Y_1 \sim \text{Poisson}(\lambda_1) \) and \(Y_2 \sim \text{Poisson}(\lambda_2) \). If \(Y_1 \) and \(Y_2 \) are independent, the mgf of \(U = Y_1 + Y_2 \) is

\[
m_U(t) = m_{Y_1}(t)m_{Y_2}(t) = e^{\lambda_1(e^t-1)}e^{\lambda_2(e^t-1)} = e^{(\lambda_1+\lambda_2)(e^t-1)}.
\]

We recognize this as the mgf of a Poisson random variable with mean \(\lambda_1 + \lambda_2 \). Because mgfs are unique, we know that \(U \sim \text{Poisson}(\lambda_1 + \lambda_2) \). The pmf of \(U \) is

\[
p_U(u) = \begin{cases}
\frac{(\lambda_1 + \lambda_2)^u e^{-(\lambda_1+\lambda_2)}}{u!}, & u = 0, 1, 2, \\
0, & \text{otherwise}.
\end{cases}
\]

(b) In this part, we want to find \(p_{Y_1|U}(y_1|m) \), the conditional pmf of \(Y_1 \), given \(U = Y_1 + Y_2 = m \). First note that if the sum \(U = Y_1 + Y_2 = m \), then the possible values of \(Y_1 \) are \(\{y_1 : y_1 = 0, 1, 2, ..., m\} \). Therefore, the conditional pmf \(p_{Y_1|U}(y_1|m) \) is nonzero for these values of \(y_1 \), and is otherwise equal to zero. Recall from STAT 511, the definition of a conditional pmf

\[
p_{Y_1|U}(y_1|m) = \frac{p_{Y_1,U}(y_1,m)}{p_U(m)} = \frac{P(Y_1 = y_1, U = m)}{P(U = m)}.
\]

We know

\[
P(U = m) = p_U(m) = \frac{(\lambda_1 + \lambda_2)^m e^{-(\lambda_1+\lambda_2)}}{m!}
\]

from part (a). How do we find the joint probability \(P(Y_1 = y_1, U = m) \)? We don’t have the joint pmf of \(Y_1 \) and \(U \), so it is not clear how to calculate this. The key is to note that

\[
\{Y_1 = y_1, U = m\} = \{Y_1 = y_1, Y_1 + Y_2 = m\} = \{Y_1 = y_1, Y_2 = m - y_1\}.
\]

Therefore,

\[
P(Y_1 = y_1, U = m) = P(Y_1 = y_1, Y_2 = m - y_1) \overset{Y_1 \perp \perp Y_2}{=} P(Y_1 = y_1)P(Y_2 = m - y_1).
\]

We can calculate these two probabilities because \(Y_1 \sim \text{Poisson}(\lambda_1) \) and \(Y_2 \sim \text{Poisson}(\lambda_2) \); that is,

\[
P(Y_1 = y_1) = \frac{\lambda_1^{y_1} e^{-\lambda_1}}{y_1!} \quad \text{and} \quad P(Y_2 = m - y_1) = \frac{\lambda_2^{m-y_1} e^{-\lambda_2}}{(m - y_1)!}.
\]

Therefore,

\[
p_{Y_1|U}(y_1|m) = \frac{P(Y_1 = y_1)P(Y_2 = m - y_1)}{P(U = m)} \frac{\lambda_1^{y_1} e^{-\lambda_1}}{y_1!} \frac{\lambda_2^{m-y_1} e^{-\lambda_2}}{(m - y_1)!}
\]

\[
= \frac{m!}{y_1!(m - y_1)!} \frac{\lambda_1^{y_1}}{(\lambda_1 + \lambda_2)^y_1} \frac{\lambda_2^{m-y_1}}{(\lambda_1 + \lambda_2)^{m-y_1}}
\]

\[
= \left(\frac{m}{y_1} \right) \left(\frac{\lambda_1}{\lambda_1 + \lambda_2} \right)^{y_1} \left(\frac{\lambda_2}{\lambda_1 + \lambda_2} \right)^{m-y_1} = \left(\frac{\lambda_1}{\lambda_1 + \lambda_2} \right)^{y_1} \left(\frac{\lambda_2}{\lambda_1 + \lambda_2} \right)^{m-y_1}.
\]
Summarizing,

\[
p_{Y_1|U}(y_1|m) = \begin{cases}
 \left(\frac{\lambda_1}{\lambda_1 + \lambda_2} \right)^{y_1} \left(1 - \frac{\lambda_1}{\lambda_1 + \lambda_2} \right)^{m-y_1}, & y_1 = 0, 1, 2, \ldots, m \\
 0, & \text{otherwise.}
\end{cases}
\]

We recognize this as the pmf of a binomial random variable with number of trials \(m\) and success probability \(p = \frac{\lambda_1}{\lambda_1 + \lambda_2}\).

Therefore, we have shown

\[Y_1 \sim \text{Poisson}(\lambda_1), Y_2 \sim \text{Poisson}(\lambda_2), Y_1 \perp Y_2 \implies Y_1|Y_1 + Y_2 = m \sim \text{b}(m, \frac{\lambda_1}{\lambda_1 + \lambda_2}).\]

6.57. We are given

\[Y_1 \sim \text{gamma}(\alpha_1, \beta), Y_2 \sim \text{gamma}(\alpha_2, \beta), \ldots, Y_n \sim \text{gamma}(\alpha_n, \beta)\]

and \(Y_1, Y_2, \ldots, Y_n\) are mutually independent. We want to find the distribution of

\[U = Y_1 + Y_2 + \cdots + Y_n.\]

Whenever you are asked to find the distribution of the sum of mutually independent random variables, try the mgf method. The mgf of the sum \(U\) is

\[
m_U(t) = m_{Y_1}(t)m_{Y_2}(t)\cdots m_{Y_n}(t) = \left(\frac{1}{1 - \beta t} \right)^{\alpha_1} \times \left(\frac{1}{1 - \beta t} \right)^{\alpha_2} \times \cdots \times \left(\frac{1}{1 - \beta t} \right)^{\alpha_n} = \left(\frac{1}{1 - \beta t} \right)^{\sum \alpha_i}.\]

We recognize this as the mgf of a gamma random variable with shape parameter \(\sum \alpha_i\) and scale parameter \(\beta\). Because mgfs are unique, we know

\[U = Y_1 + Y_2 + \cdots + Y_n \sim \text{gamma}(\sum \alpha_i, \beta).\]

6.59. We are given \(Y_1 \sim \chi^2(\nu_1), Y_2 \sim \chi^2(\nu_2)\), and \(Y_1\) and \(Y_2\) are independent. We want to find the distribution of \(U = Y_1 + Y_2\). Use the mgf method. The mgf of the sum \(U\) is

\[
m_U(t) = m_{Y_1}(t)m_{Y_2}(t) = \left(\frac{1}{1 - 2t} \right)^{\nu_1/2} \left(\frac{1}{1 - 2t} \right)^{\nu_2/2} = \left(\frac{1}{1 - 2t} \right)^{\nu_1/2 + \nu_2/2}.
\]

We recognize this as the mgf of a \(\chi^2\) random variable with degrees of freedom \(\nu_1 + \nu_2\). Because mgfs are unique, we know \(U = Y_1 + Y_2 \sim \chi^2(\nu_1 + \nu_2)\).

Note: See how easy the mgf method is? As an exercise, try to redo Exercise 6.59 by using the cdf method; i.e., derive \(F_U(u) = P(U \leq u)\) directly and then take derivatives. You should get the \(\chi^2(\nu_1 + \nu_2)\) pdf. This argument is much harder, but it still should work.
6.63. The authors have already done the bivariate transformation for us. Starting with \(Y_1 \sim \text{exponential}(\beta) \), \(Y_2 \sim \text{exponential}(\beta) \), and \(Y_1 \perp Y_2 \), the authors show the joint distribution of

\[
U_1 = \frac{Y_1}{Y_1 + Y_2} \quad \text{and} \quad U_2 = Y_1 + Y_2
\]

is

\[
f_{U_1, U_2}(u_1, u_2) = \begin{cases} \frac{1}{\beta^2} u_2 e^{-u_2/\beta}, & 0 < u_1 < 1, \ u_2 > 0 \\ 0, & \text{otherwise.} \end{cases}
\]

Go through the bivariate transformation again and re-derive this yourself for practice. Note the support of \((U_1, U_2)\)

\[
R_{U_1, U_2} = \{(u_1, u_2) : 0 < u_1 < 1, \ u_2 > 0\}.
\]

This region is shown above. The joint pdf \(f_{U_1, U_2}(u_1, u_2) \) is a three-dimensional function which takes the value \(\frac{1}{\beta^2} u_2 e^{-u_2/\beta} \) over this region and is otherwise equal to zero.

(a) To find the marginal distribution of \(U_1 \), we integrate the joint pdf \(f_{U_1, U_2}(u_1, u_2) \) over \(u_2 \).

For \(0 < u_1 < 1 \), we have

\[
f_{U_1}(u_1) = \int_{u_2=0}^{\infty} f_{U_1, U_2}(u_1, u_2) du_2 = \int_{u_2=0}^{\infty} \frac{1}{\beta^2} u_2 e^{-u_2/\beta} du_2 = 1,
\]

because \(\frac{1}{\beta^2} u_2 e^{-u_2/\beta} \) is the gamma(2, \(\beta \)) pdf and we are integrating over \((0, \infty)\). We have shown

\[
f_{U_1}(u_1) = \begin{cases} 1, & 0 < u_1 < 1 \\ 0, & \text{otherwise.} \end{cases}
\]

We recognize this as the \(U(0, 1) \) pdf; i.e., \(U_1 \sim U(0, 1) \).
(b) To find the marginal distribution of U_2, we integrate the joint pdf $f_{U_1,U_2}(u_1,u_2)$ over u_1. For $u_2 > 0$, we have

$$f_{U_2}(u_2) = \int_{u_1=0}^{1} f_{U_1,U_2}(u_1,u_2) \, du_1 = \int_{u_1=0}^{1} \frac{1}{\beta^2} u_2 e^{-u_2/\beta} \, du_1$$

$$= \frac{1}{\beta^2} u_2 e^{-u_2/\beta} \int_{u_1=0}^{1} 1 \, du_1 = \frac{1}{\beta^2} u_2 e^{-u_2/\beta}.$$

We have shown

$$f_{U_2}(u_2) = \begin{cases}
\frac{1}{\beta^2} u_2 e^{-u_2/\beta}, & u_2 > 0 \\
0, & \text{otherwise.}
\end{cases}$$

We recognize this as the gamma$(2, \beta)$ pdf; i.e., $U_2 \sim \text{gamma}(2, \beta)$.

(c) Note that we can write

$$f_{U_1,U_2}(u_1,u_2) = \frac{1}{\beta^2} u_2 e^{-u_2/\beta} = 1 \times \frac{1}{\beta^2} u_2 e^{-u_2/\beta} = f_{U_1}(u_1) f_{U_2}(u_2).$$

Because the joint pdf can be written as the product of the marginal pdfs, we know $U_1 \perp \perp U_2$.

6.68. We start with the random variables Y_1 and Y_2, whose joint pdf is

$$f_{Y_1,Y_2}(y_1,y_2) = \begin{cases}
8y_1 y_2, & 0 \leq y_1 \leq y_2 \leq 1 \\
0, & \text{otherwise.}
\end{cases}$$

Note the support of (Y_1, Y_2) is

$$R_{Y_1,Y_2} = \{(y_1, y_2) : 0 \leq y_1 \leq y_2 \leq 1\}.$$

The graph of R_{Y_1,Y_2} is shown at the top of the next page (left). The joint pdf $f_{Y_1,Y_2}(y_1,y_2)$ is a three-dimensional function which takes the value $8y_1y_2$ over this triangular region and is otherwise equal to zero.

Our goal is to find the joint pdf of

$$U_1 = h_1(Y_1, Y_2) = \frac{Y_1}{Y_2}$$

$$U_2 = h_2(Y_1, Y_2) = Y_2.$$

We use a bivariate transformation. We first find the support of (U_1, U_2). Note that

$$0 \leq y_1 \leq y_2 \leq 1 \implies u_1 = \frac{y_1}{y_2} \in [0, 1]$$

and $0 \leq u_2 = y_2 \leq 1$. Therefore, the support of (U_1, U_2) is

$$R_{U_1,U_2} = \{(u_1, u_2) : 0 \leq u_1 \leq 1, \ 0 \leq u_2 \leq 1\}.$$

The graph of R_{U_1,U_2} is shown at the top of the next page (right).
To verify the transformation above is one-to-one, we show $h(y_1, y_2) = h(y_1^*, y_2^*) \implies y_1 = y_1^*$ and $y_2 = y_2^*$, where

$$h \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} h_1(y_1, y_2) \\ h_2(y_1, y_2) \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}.$$

Suppose $h(y_1, y_2) = h(y_1^*, y_2^*)$. Clearly $y_2 = y_2^*$. Then the first equation implies $y_1 = y_1^*$. Therefore the transformation is one to one.

The inverse transformation is found by solving

$$u_1 = \frac{y_1}{y_2} \quad u_2 = \frac{y_2}{y_2}$$

for $y_1 = h_1^{-1}(u_1, u_2)$ and $y_2 = h_2^{-1}(u_1, u_2)$. Straightforward algebra shows

$$y_1 = h_1^{-1}(u_1, u_2) = u_1 u_2 \quad y_2 = h_2^{-1}(u_1, u_2) = u_2.$$

The Jacobian is

$$J = \begin{vmatrix} \frac{\partial h_1^{-1}(u_1, u_2)}{\partial u_1} & \frac{\partial h_1^{-1}(u_1, u_2)}{\partial u_2} \\ \frac{\partial h_2^{-1}(u_1, u_2)}{\partial u_1} & \frac{\partial h_2^{-1}(u_1, u_2)}{\partial u_2} \end{vmatrix} = \begin{vmatrix} u_2 & u_1 \\ 0 & 1 \end{vmatrix} = u_2(1) - u_1(0) = u_2.$$

Therefore, the joint pdf of (U_1, U_2), where nonzero, is

$$f_{U_1, U_2}(u_1, u_2) = f_{Y_1, Y_2}(h_1^{-1}(u_1, u_2), h_2^{-1}(u_1, u_2))|J| = f_{Y_1, Y_2}(u_1 u_2, u_2)|u_2| = 8(u_1 u_2) u_2 \times u_2 = 8u_1 u_2^3.$$
Summarizing, the joint pdf of \((U_1, U_2)\) is

\[
f_{U_1,U_2}(u_1, u_2) = \begin{cases}
8u_1u_2^3, & 0 \leq u_1 \leq 1, 0 \leq u_2 \leq 1 \\
0, & \text{otherwise}
\end{cases}
\]

(b) Note that we can write

\[
f_{U_1,U_2}(u_1, u_2) = 8u_1u_2^3 = 2u_1 \times 4u_2^3 = f_{U_1}(u_1)f_{U_2}(u_2).
\]

We recognize

\[
f_{U_1}(u_1) = \begin{cases}
2u_1, & 0 \leq u_1 \leq 1 \\
0, & \text{otherwise}
\end{cases}
\]

and

\[
f_{U_2}(u_2) = \begin{cases}
4u_2^3, & 0 \leq u_2 \leq 1 \\
0, & \text{otherwise}
\end{cases}
\]

as beta pdfs. Specifically, \(U_1 \sim \text{beta}(2, 1)\) and \(U_2 \sim \text{beta}(4, 1)\). Because the joint pdf can be written as the product of the marginal pdfs, we know \(U_1 \perp \perp U_2\).