1. (a) You can use the transformation method or the cdf technique. Here are both solutions.

Transformation method: Note that \(u = h(r) = 10000e^r \) is a strictly increasing function over \([0.02, 0.04]\), the support of \(R \). Therefore, the support of \(U = h(R) = 10000e^R \) is

\[
R_U = \{ u : 10000e^{0.02} \leq u \leq 10000e^{0.04} \}.
\]

Let’s find the inverse transformation:

\[
u = h(r) = 10000e^r \iff \frac{u}{10000} = e^r \iff \ln\left(\frac{u}{10000}\right) = r = h^{-1}(u).
\]

The derivative of the inverse transformation is

\[
\frac{d}{du}h^{-1}(u) = \left|\frac{d}{du}\ln\left(\frac{u}{10000}\right)\right| = 50 \cdot \frac{1}{u}.
\]

Therefore, for \(10000e^{0.02} \leq u \leq 10000e^{0.04}\), the pdf of \(U\) is

\[
f_U(u) = \begin{cases}
50 \cdot \frac{1}{u}, & 10000e^{0.02} \leq u \leq 10000e^{0.04} \\
0, & \text{otherwise.}
\end{cases}
\]

CDF technique: The cdf of \(R \sim \mathcal{U}(0.02, 0.04) \) is

\[
F_R(r) = \begin{cases}
0, & r < 0.02 \\
\frac{r - 0.02}{0.02}, & 0.02 \leq r \leq 0.04 \\
1, & r > 0.04.
\end{cases}
\]

Therefore, for \(10000e^{0.02} \leq u \leq 10000e^{0.04}\), the cdf of \(U = h(R) = 10000e^R \) is

\[
F_U(u) = P(U \leq u) = P(10000e^R \leq u) = P\left(R \leq \ln\left(\frac{u}{10000}\right)\right) = F_R\left(\ln\left(\frac{u}{10000}\right)\right) = \frac{\ln\left(\frac{u}{10000}\right) - 0.02}{0.02}.
\]

Therefore, for \(10000e^{0.02} \leq u \leq 10000e^{0.04}\), the pdf of \(U\) is

\[
f_U(u) = \frac{d}{du}F_U(u) = \frac{d}{du}\left[\ln\left(\frac{u}{10000}\right) - 0.02\right] = 50 \cdot \frac{1/10000}{u/10000} = \frac{50}{u}.
\]

Summarizing,

\[
f_U(u) = \begin{cases}
50 \cdot \frac{1}{u}, & 10000e^{0.02} \leq u \leq 10000e^{0.04} \\
0, & \text{otherwise.}
\end{cases}
\]

(b) You could calculate

\[
E(U) = E(10000e^R)
\]
directly by using the pdf of R (by appealing to the Law of the Unconscious Statistician). Note that

$$E(10000e^R) = \int_{\mathbb{R}} 10000e^r f_R(r) \, dr = \int_{0.02}^{0.04} 10000e^r \times 50 \, dr$$

$$= 50000e^{r|_{0.04}^{0.02}} = 50000(e^{0.04} - e^{0.02}) = 10304.72.$$

You could also calculate $E(U) = E(10000e^R)$ directly by using the pdf of U. We have

$$E(U) = \int_{\mathbb{R}} uf_U(u) \, du = \int_{10000e^{0.02}}^{10000e^{0.04}} u \left(\frac{50}{u} \right) \, du$$

$$= 50u|_{10000e^{0.02}}^{10000e^{0.04}} = 50(10000)(e^{0.04} - e^{0.02}) = 10304.72.$$

2. (a) The mgf of $Y \sim \text{exponential}(1)$ is

$$m_Y(t) = \frac{1}{1 - t},$$

for $t < 1$. The mgf of $T = Y_1 + Y_2 + Y_3 + Y_4$ is

$$m_T(t) = [m_Y(t)]^4 = \left(\frac{1}{1 - t} \right)^4,$$

for $t < 1$. We recognize this as the mgf of a gamma random variable with shape $\alpha = 4$ and scale $\beta = 1$. Because mgfs are unique, $T \sim \text{gamma}(4, 1)$.

(b) The pdf of $Y_{(4)}$ is

$$f_{Y_{(4)}}(y) = 4f_Y(y)[F_Y(y)]^{4-1},$$

where

$$F_Y(y) = \left\{ \begin{array}{ll}
0, & y \leq 0 \\
1 - e^{-y}, & y > 0
\end{array} \right.$$

is the cdf of $Y \sim \text{exponential}(1)$. Therefore, for $y > 0$, we have

$$f_{Y_{(4)}}(y) = 4e^{-y}(1 - e^{-y})^3.$$

Summarizing,

$$f_{Y_{(4)}}(y) = \left\{ \begin{array}{ll}
4e^{-y}(1 - e^{-y})^3, & y > 0 \\
0, & \text{otherwise}
\end{array} \right.$$

3. You can use the cdf technique or a bivariate transformation. Here are both solutions.

CDF technique: The bivariate support of Y_1 and Y_2 is $R = \{(y_1, y_2) : 0 < y_1 < y_2 < 1\}$; see next page (left). The joint pdf $f_{Y_1, Y_2}(y_1, y_2)$ is a three-dimensional function which takes the value $6(1-y_2)$ over this region and is otherwise equal to zero. First note that

$$0 < y_1 < y_2 < 1 \implies u = \frac{y_1}{y_2} \in (0, 1).$$
Therefore, the support of

\[U = \frac{Y_1}{Y_2} \]

is \(R_U = \{ u : 0 < u < 1 \} \). For \(0 < u < 1 \), the cdf of \(U \) is

\[
F_U(u) = P(U \leq u) = P\left(\frac{Y_1}{Y_2} \leq u \right) = \int_{(y_1, y_2) \in B} f_{Y_1, Y_2}(y_1, y_2) dy_1 dy_2 = \int_{(y_1, y_2) \in B} 6(1-y_2)dy_1 dy_2,
\]

where the set \(B = \{(y_1, y_2) : 0 < y_1 < y_2 < 1, \frac{y_1}{y_2} \leq u \} \) is shown above (right). Note that the boundary of \(B \) is

\[
\frac{y_1}{y_2} = u \implies y_2 = \frac{y_1}{u},
\]

a linear function of \(y_1 \) with slope \(1/u \) and intercept 0. This boundary line is shown above and the set \(B \) is shown shaded (right). The limits to calculate the double integral above come from this picture. For \(0 < u < 1 \), we have

\[
F_U(u) = \int_{y_2=0}^{1} \int_{y_1=0}^{u y_2} 6(1-y_2)dy_1 dy_2 = \int_{y_1=0}^{1} 6(1-y_2) \left(\int_{y_1=0}^{u y_2} dy_1 \right) dy_2
\]

\[= \int_{y_2=0}^{1} 6(1-y_2) y_2 dy_2 = u \int_{y_2=0}^{1} 6y_2(1-y_2) dy_2 = u. \]
The last integral equals 1 because $6y_2(1 - y_2)$ is the $\text{beta}(2, 2)$ pdf and we are integrating it over $(0, 1)$. We have shown

$$F_U(u) = \begin{cases} 0, & u \leq 0 \\ u, & 0 < u < 1 \\ 1, & u \geq 1. \end{cases}$$

This is the cdf of $Y \sim \mathcal{U}(0, 1)$. Thus, we are done.

Bivariate transformation: To perform a bivariate transformation, let

$$U_1 = h_1(Y_1, Y_2) = \frac{Y_1}{Y_2}$$

$$U_2 = h_2(Y_1, Y_2) = Y_1 \quad \leftarrow \text{dummy variable}$$

We will perform a bivariate transformation to obtain the joint pdf $f_{U_1, U_2}(u_1, u_2)$. We will then integrate $f_{U_1, U_2}(u_1, u_2)$ over u_2 to obtain the marginal pdf $f_{U_1}(u_1)$.

It is easy to see this transformation is 1:1. Suppose $h(y_1, y_2) = h(y_1^*, y_2^*)$, where

$$h \left(\begin{array}{c} y_1 \\ y_2 \end{array} \right) = \left(\begin{array}{c} h_1(y_1, y_2) \\ h_2(y_1, y_2) \end{array} \right) = \left(\begin{array}{c} \frac{y_1}{y_2} \\ y_1 \end{array} \right).$$

It immediately follows $y_1 = y_1^*$ (from the second equation) and therefore $y_2 = y_2^*$ from the first.

What is the support of U_1 and U_2? Clearly,

$$0 < y_1 < 1 \implies 0 < u_2 < 1.$$

In addition,

$$0 < y_1 < y_2 < 1, \quad \implies \quad 0 < u_1 = \frac{y_1}{y_2} < 1.$$

However, also note that

$$u_2 = y_1 < \frac{y_1}{y_2} = u_1$$

because $y_2 < 1$. Therefore, the support of U_1 and U_2 is

$$R_{U_1, U_2} = \{ (u_1, u_2) : 0 < u_2 < u_1 < 1 \}.$$

This region is shown at the top of the next page. Next, we find the inverse transformation. Clearly,

$$y_1 = h_1^{-1}(u_1, u_2) = u_2.$$

Therefore,

$$u_1 = \frac{y_1}{y_2} \implies y_2 = \frac{y_1}{u_1} \implies y_2 = \frac{u_2}{u_1} = h_2^{-1}(u_1, u_2).$$

The inverse transformation is given by

$$y_1 = h_1^{-1}(u_1, u_2) = u_2$$

$$y_2 = h_2^{-1}(u_1, u_2) = \frac{u_2}{u_1}.$$
The Jacobian is
\[
J = \det \begin{vmatrix}
\frac{\partial h^{-1}_1(u_1, u_2)}{\partial u_1} & \frac{\partial h^{-1}_1(u_1, u_2)}{\partial u_2} \\
\frac{\partial h^{-1}_2(u_1, u_2)}{\partial u_1} & \frac{\partial h^{-1}_2(u_1, u_2)}{\partial u_2}
\end{vmatrix}
= \det \begin{vmatrix}
0 & 1 \\
-\frac{u_2}{u_1^2} & \frac{1}{u_1}
\end{vmatrix}
= 0 \left(\frac{1}{u_1} \right) - 1 \left(-\frac{u_2}{u_1^2} \right) = \frac{u_2}{u_1^2}.
\]

Therefore, the joint pdf of \((U_1, U_2)\), where nonzero, is
\[
f_{U_1, U_2}(u_1, u_2) = f_{Y_1, Y_2}(h^{-1}_1(u_1, u_2), h^{-1}_2(u_1, u_2)) | J |
= f_{Y_1, Y_2} \left(\frac{u_2}{u_1} \right) \left| \frac{u_2^2}{u_1^3} \right|
= 6 \left(1 - \frac{u_2}{u_1} \right) \times \frac{u_2}{u_1^2} = 6 \left(\frac{u_2}{u_1^2} - \frac{u_2^3}{u_1^3} \right).
\]

Summarizing,
\[
f_{U_1, U_2}(u_1, u_2) = \begin{cases}
6 \left(\frac{u_2}{u_1^2} - \frac{u_2^3}{u_1^3} \right), & 0 < u_2 < u_1 < 1 \\
0, & \text{otherwise.}
\end{cases}
\]

This completes the bivariate transformation. The marginal pdf of \(U_1\), for \(0 < u_1 < 1\), is
\[
f_{U_1}(u_1) = \int_{\mathbb{R}} f_{U_1, U_2}(u_1, u_2) du_2
= \int_{u_2=0}^{u_1} 6 \left(\frac{u_2}{u_1^2} - \frac{u_2^3}{u_1^3} \right) du_2
= 6 \left(\frac{u_2^2}{2u_1^2} - \frac{u_2^3}{3u_1^3} \right) \bigg|_{u_2=0}^{u_1}
= 6 \left(\frac{u_1^2}{2u_1^2} - \frac{u_1^3}{3u_1^3} \right) = 6 \left(\frac{1}{2} - \frac{1}{3} \right) = 1.
\]

Summarizing,
\[
f_{U_1}(u_1) = \begin{cases}
1, & 0 < u_1 < 1 \\
0, & \text{otherwise.}
\end{cases}
\]

This is the \(U(0, 1)\) pdf. Thus, we are done.
4. (a) \(Q_1 \sim \mathcal{N}(0, 1); \ Q_2 \sim \chi^2(n-1). \)

(b) We know
\[
Q_1 \sim \mathcal{N}(0, 1) \implies Q_1^2 \sim \chi^2(1).
\]
We also know \(Q_1 \perp Q_2. \) This is true because \(Q_1 \) is a function of \(Y \) and \(Q_2 \) is a function of \(S^2 \) (and \(Y \perp S^2 \)). Therefore, the mgf of the sum \(Q_1^2 + Q_2 \) is the product of the respective mgfs; i.e.,
\[
m_{Q_1^2}(t)m_{Q_2}(t) = \left(\frac{1}{1 - 2t} \right)^{\frac{1}{2}} \left(\frac{1}{1 - 2t} \right)^{\frac{n-1}{2}} = \left(\frac{1}{1 - 2t} \right)^{\frac{n}{2}}.
\]
We recognize this as the \(\chi^2(n) \) mgf. Because mgfs are unique, we have \(Q_1^2 + Q_2 \sim \chi^2(n). \)

(c) We’ll start by following the hint. We know \(Y_{n+1} \sim \mathcal{N}(\mu, \sigma^2) \) and
\[
(\mu, \sigma^2) = (\mu, \sigma^2(n)).
\]
We know \(Y_{n+1} - \overline{Y} \) is a linear combination of normal random variables, so it is normally distributed too. Let’s calculate the mean and variance of \(Y_{n+1} - \overline{Y} \); we have
\[
E(Y_{n+1} - \overline{Y}) = E(Y_{n+1}) - E(\overline{Y}) = \mu - \mu = 0
\]
and
\[
V(Y_{n+1} - \overline{Y}) = V(Y_{n+1}) + V(\overline{Y}) - 2 \text{Cov}(Y_{n+1}, \overline{Y}) = \sigma^2 + \frac{\sigma^2}{n} = \sigma^2 \left(1 + \frac{1}{n} \right).
\]
The covariance term above is zero because \(Y_{n+1} \) is independent of \(Y_1, Y_2, \ldots, Y_n \) (and hence \(Y_{n+1} \) is independent of any function of \(Y_2, \ldots, Y_n \), like \(\overline{Y} \)). Therefore,
\[
Y_{n+1} - \overline{Y} \sim \mathcal{N}
\left(0, \sigma^2 \left(1 + \frac{1}{n} \right) \right) \implies Z = \frac{Y_{n+1} - \overline{Y}}{\sqrt{\sigma^2 \left(1 + \frac{1}{n} \right)}} \sim \mathcal{N}(0, 1).
\]
Now, consider
\[
Q_2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1).
\]
Note that \(Z \perp Q_2. \) This is true because both \(Y_{n+1} \) and \(\overline{Y} \) are independent of \(S^2 \). Therefore, we can create a \(t \) random variable by taking
\[
\frac{Z}{\sqrt{Q_2/(n-1)}} = \frac{Y_{n+1} - \overline{Y}}{S \sqrt{1 + \frac{1}{n}}} \sim t(n-1).
\]

5. (a) We can find the pdf of \(U = h(Y) = Y + 2 \) by using a transformation. Note that \(h(y) = y + 2 \) is a linear function; hence it is 1:1. Also, note that
\[
y > 0 \implies u = y + 2 > 2.
\]
Therefore, the support of U is $R_U = \{u : u > 2\}$. The inverse transformation is found as follows:
\[u = h(y) = y + 2 \implies y = h^{-1}(u) = u - 2. \]

The derivative of the inverse transformation is
\[\frac{d}{du} h^{-1}(u) = \frac{d}{du}(u - 2) = 1. \]

Therefore, the pdf of U, for $u > 2$, is given by
\[
\begin{align*}
 f_U(u) &= f_Y(h^{-1}(u)) \left| \frac{d}{du} h^{-1}(u) \right| \\
 &= \frac{24}{(u - 2 + 2)^4} \times 1 = \frac{24}{u^4}.
\end{align*}
\]

Summarizing, the pdf of U is
\[
 f_U(u) = \begin{cases}
 \frac{24}{u^4}, & u > 2 \\
 0, & \text{otherwise}.
\end{cases}
\]

(b) To approximate $P(\overline{U} > 5)$, we will use the CLT. The (approximate) sampling distribution of \overline{U} conferred by the CLT is
\[
\overline{U} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right),
\]
where $\mu = E(U)$ and $\sigma^2 = V(U)$. Let’s calculate these. The mean of U is
\[
E(U) = \int_R u f_U(u) du = \int_2^\infty u \left(\frac{24}{u^4}\right) du = \left. \frac{24}{u^3} \right|_2^\infty = 12 \left(\frac{1}{4} - 0\right) = 3.
\]

The second moment of U is
\[
E(U^2) = \int_R u^2 f_U(u) du = \int_2^\infty u^2 \left(\frac{24}{u^4}\right) du = \left. \frac{24}{u^2} \right|_2^\infty = 24 \left(\frac{1}{2} - 0\right) = 12.
\]

Therefore, the variance of U is
\[
V(U) = E(U^2) - [E(U)]^2 = 12 - (3)^2 = 3.
\]

The approximate sampling distribution of \overline{U} (based on an iid sample of size $n = 20$) is
\[
\overline{U} \sim \mathcal{N}\left(3, \frac{3}{20}\right).
\]

Therefore,
\[
P(\overline{U} > 5) = P\left(\frac{\overline{U} - 3}{\frac{3}{\sqrt{20}}} > \frac{5 - 3}{\sqrt{\frac{3}{20}}}\right) \approx P(Z > 5.16),
\]

where $Z \sim \mathcal{N}(0, 1)$. Therefore, $P(\overline{U} > 5)$ can be approximated by finding the right-tail probability $P(Z > 5.16)$ on the $\mathcal{N}(0, 1)$ pdf. This probability is extremely small (≈ 0.000000123), so it is highly unlikely the average hospitalization period will exceed 5 days.