1. Suppose that X is a continuous random variable with probability density function (pdf)

$$f_X(x|\theta) = \theta x^{-(\theta+1)} I(x>1),$$

where $\theta > 0$.

(a) Calculate an exact expression for the tail probability P(X > c), for c > 1.

(b) Calculate the upper bound on P(X > c), c > 1, provided by Markov's Inequality. Note any restrictions on θ that are needed for the upper bound to be applicable.

2. In each part below, give an example of a parametric family $\{f_X(x|\theta); \theta \in \Theta\}$ that satisfies the stated conditions. Specify the family, the parameter space Θ , and the support \mathcal{X} . Prove any claims you make.

(a) a family that is a single parameter exponential family (i.e., d = 1) and also a scale family. (b) a family that is a two-parameter full exponential family (i.e., d = k = 2) and also a location-scale family.

(c) a two-parameter full exponential family with $\boldsymbol{\theta} = (\theta_1, \theta_2)$ that contains a subfamily, with $\theta_2 = g(\theta_1)$, that is a full one-parameter exponential family.

3. Consider the random vector (X, Y)' with probability density function (pdf)

$$f_{X,Y}(x,y) = 2x^{-1}e^{-2x}I(0 < y < x < \infty).$$

- (a) Verify that this is a valid pdf.
- (b) Calculate P(Y > X/2, X < 1).
- (c) Calculate the correlation of X and Y.

4. Suppose that (X, Y)' has the following probability density function (pdf)

$$f_{X,Y}(x,y) = (xy)^{-2}I(x>1)I(y>1).$$

- (a) Are X and Y independent? Explain.
- (b) Find the joint pdf of U = XY and V = X/Y.

(c) Find the marginal pdfs of U and V. Are U and V independent?

5. Suppose that $X_1, X_2, ..., X_n$ are mutually independent random variables. Each random variable, marginally, follows a standard normal distribution.

(a) Derive the distribution of $S = \frac{1}{n}(X_1 + X_2 + \dots + X_n)$.

(b) Derive the distribution of $T = X_1^2 + X_2^2 + \dots + X_n^2$.

(c) Derive the moment-generating functions (mgf) of

$$U = \sqrt{nS}$$
 and $V = \frac{T-n}{\sqrt{2n}}$.

(Derive each one separately; I am not asking for a "joint" mgf here). What does each mgf converge to as $n \to \infty$?

6. Suppose that X and Y are random variables with finite means and variances. Suppose that we want to predict Y as a linear function of X. That is, we are interested only in functions of the form $Y = \beta_0 + \beta_1 X$, for fixed constants β_0 and β_1 . Define the mean squared error of prediction by

$$Q(\beta_0, \beta_1) \equiv E\{ [Y - (\beta_0 + \beta_1 X)]^2 \}.$$

(a) Show that $Q(\beta_0, \beta_1)$ is minimized when

$$\beta_1 = \rho\left(\frac{\sigma_Y}{\sigma_X}\right)$$

and

$$\beta_0 = E(Y) - \beta_1 E(X),$$

where $\rho = \operatorname{corr}(X, Y)$.

(b) Calculate the values of β_0 and β_1 for the bivariate distribution in Problem 3. Does $\beta_0 + \beta_1 X$ equal E(Y|X) in that problem? Comment.