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1 Probability Theory

Complementary reading: Chapter 1 (CB). Sections 1.1-1.6.

1.1 Set Theory

Definitions: A random experiment is an experiment that produces outcomes which are
not predictable with certainty in advance. The sample space S for a random experiment
is the set of all possible outcomes.

Example 1.1: Consider the following random experiments and their associated sample
spaces.

(a) Observe the high temperature for today:

S = {ω : −∞ < ω <∞} = R

(b) Record the number of planes landing at CAE:

S = {ω : ω = 0, 1, 2, ..., } = Z+

(c) Toss a coin three times:

S = {(HHH), (HHT), ..., (TTT)}

(d) Measure the length of a female subject’s largest uterine fibroid:

S = {ω : ω ≥ 0} = R+

Definitions: We say that a set (e.g., A, B, S, etc.) is countable if its elements can be put
into a 1:1 correspondence with the set of natural numbers

N = {1, 2, 3, ..., }.

If a set is not countable, we say it is uncountable. In Example 1.1,

(a) S = R is uncountable

(b) S = Z+ is countable (i.e., countably infinite); |S| = +∞

(c) S = {(HHH), (HHT), ..., (TTT)} is countable (i.e., countably finite); |S| = 8

(d) S = R+ is uncountable
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Any finite set is countable. By “finite,” we mean that |A| < ∞, that is, “the process
of counting the elements in A comes to an end.” An infinite set A can be countable or
uncountable. By “infinite,” we mean that |A| = +∞. For example,

• N = {1, 2, 3, ..., } is countably infinite

• A = {ω : 0 < ω < 1} is uncountable.

Definitions: Suppose that S is a sample space for a random experiment. An event A is a
subset of S, that is, A ⊆ S.

• If ω ∈ A, we say that “A occurs”

• If ω /∈ A, we say that “A does not occur.”

The set A is a subset of B if
ω ∈ A =⇒ ω ∈ B.

This is written A ⊂ B or A ⊆ B. Two sets A and B are equal if each set is a subset of the
other, that is,

A = B ⇐⇒ A ⊆ B and B ⊆ A.

Set Operations: Suppose A and B are subsets of S.

• Union: A ∪B = {ω ∈ S : ω ∈ A or ω ∈ B}

• Intersection: A ∩B = {ω ∈ S : ω ∈ A and ω ∈ B}

• Complementation: Ac = {ω ∈ S : ω /∈ A}

Theorem 1.1.4. Suppose A, B, and C are subsets of S.

(a) Commutativity:

A ∪B = B ∪ A
A ∩B = B ∩ A

(b) Associativity:

(A ∪B) ∪ C = A ∪ (B ∪ C)

(A ∩B) ∩ C = A ∩ (B ∩ C)

(c) Distributive Laws:

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)
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(d) DeMorgan’s Laws:

(A ∪B)c = Ac ∩Bc

(A ∩B)c = Ac ∪Bc

Extension: Suppose that A1, A2, ..., An is a finite sequence of sets, where each Ai ⊆ S.

• Union:
n⋃
i=1

Ai = {ω ∈ S : ω ∈ Ai ∃i}

• Intersection:
n⋂
i=1

Ai = {ω ∈ S : ω ∈ Ai ∀i}

These operations are similarly defined for a countable sequence of sets A1, A2, ..., and also
for an uncountable collection of sets; see pp 4 (CB).

Definitions: Suppose that A and B are subsets of S. We say that A and B are disjoint
(or mutually exclusive) if

A ∩B = ∅.

We say that A1, A2, ..., are pairwise disjoint (or pairwise mutually exclusive) if

Ai ∩ Aj = ∅ ∀i 6= j.

Definition: Suppose A1, A2, ..., are subsets of S. We say that A1, A2, ..., form a partition
of S if

(a) Ai ∩ Aj = ∅ ∀i 6= j (i.e., the Ai’s are pairwise disjoint)

(b)
⋃∞
i=1 Ai = S.

Example 1.2. Suppose S = [0,∞). Define Ai = [i− 1, i), for i = 1, 2, ...,. Clearly, the Ai’s
are pairwise disjoint and ∪∞i=1Ai = S, so the sequence A1, A2, ..., partitions S.

Remark: The following topics are “more advanced” than those presented in CB’s §1.1 but
are needed to write proofs of future results.

Definitions: If A1 ⊆ A2 ⊆ A3 ⊆ · · · , we say that {An} is an increasing sequence of sets.
If A1 ⊇ A2 ⊇ A3 ⊇ · · · , we say that {An} is a decreasing sequence of sets.

1. If {An} is increasing, then

lim
n→∞

An =
∞⋃
i=1

Ai.
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2. If {An} is decreasing, then

lim
n→∞

An =
∞⋂
i=1

Ai.

3. If {An} is neither increasing nor decreasing, limn→∞An may or may not exist.

Example 1.3. Suppose S = R+ = [0,∞). Define

An = [a− 1/n, b+ 1/n],

where 1 < a < b < ∞. For example, A1 = [a − 1, b + 1], A2 = [a − 1/2, b + 1/2],
A3 = [a − 1/3, b + 1/3], etc. Clearly, A1 ⊇ A2 ⊇ A3 ⊇ · · · , that is, {An} is monotone
decreasing. Therefore,

lim
n→∞

An =
∞⋂
i=1

Ai = [a, b].

Example 1.4. Suppose S = (−1, 1). Define

An =

{
(−1/n, 0], n odd
(0, 1/n), n even.

That is, A1 = (−1, 0], A2 = (0, 1/2), A3 = (−1/3, 0], etc. The sequence {An} is neither
increasing nor decreasing.

Question: In general, what does it mean for a sequence of sets {An} to “converge?” Consider
the following:

B1 =
∞⋃
k=1

Ak

B2 =
∞⋃
k=2

Ak Note: B2 ⊆ B1

B3 =
∞⋃
k=3

Ak Note: B3 ⊆ B2

...

In general, define

Bn =
∞⋃
k=n

Ak.

Because {Bn} is a decreasing sequence of sets, we know that limn→∞Bn exists. In particular,

lim
n→∞

Bn =
∞⋂
n=1

Bn

=
∞⋂
n=1

∞⋃
k=n

Ak ≡ lim sup
n
An = lim An.
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Interpretation: For a sequence of sets {An},

lim An = {ω ∈ S : ∀n ≥ 1 ∃k 3 ω ∈ Ak}.

This is the set of all outcomes ω ∈ S that are in an infinite number of the An sets. We write

ω ∈ lim An ⇐⇒ ω ∈ An i.o. (infinitely often).

Now, let’s return to our arbitrary sequence of sets {An}. Consider the following:

C1 =
∞⋂
k=1

Ak

C2 =
∞⋂
k=2

Ak Note: C2 ⊇ C1

C3 =
∞⋂
k=3

Ak Note: C3 ⊇ C2

...

In general, define

Cn =
∞⋂
k=n

Ak.

Because {Cn} is an increasing sequence of sets, we know that limn→∞Cn exists. In particular,

lim
n→∞

Cn =
∞⋃
n=1

Cn

=
∞⋃
n=1

∞⋂
k=n

Ak ≡ lim inf
n
An = lim An.

Interpretation: For a sequence of sets {An},

lim An = {ω ∈ S : ∃n ≥ 1 3 ω ∈ Ak ∀k ≥ n}.

This is the set of all outcomes ω ∈ S that are in An eventually. We write

ω ∈ lim An ⇐⇒ ω ∈ An e.v. (eventually).

Now, we return to our original question: In general, what does it mean for a sequence of sets
{An} to “converge?”

Answer: We say that limn→∞An exists if

lim An = lim An
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and define
lim
n→∞

An = A

to be this common set. We also write An → A, as n→∞. If

lim An 6= lim An,

we say that limn→∞An does not exist.

Example 1.5. Define An = {ω : 1/n < ω < 1 + 1/n}. Find lim An and lim An. Does
limn→∞An exist?

1.2 Basics of Probability Theory

Question: Given a random experiment and an associated sample space S, how do we assign
a probability to A ⊆ S?

Question: How do we define probability?

1. Relative Frequency:

pr(A) = lim
n→∞

n(A)

n

2. Subjective: “confidence” or “measure of belief” that A will occur

3. Modern Axiomatic: pr(A) = P (A), where P is a set function satisfying certain
axioms.

Definition: Let B denote a collection of subsets of S. We say that B is a σ-algebra on S if

(i) ∅ ∈ B

(ii) A ∈ B =⇒ Ac ∈ B; i.e., B is closed under complementation.

(iii) A1, A2, ...,∈ B =⇒
⋃∞
i=1 Ai ∈ B; i.e., B is closed under countable unions.

Remark: At this point, we can think of B simply as a collection of events to which we can
“assign” probability (so that mathematical contradictions are avoided). If A ∈ B, we say
that A is a B-measurable set.

Results: Suppose that B is a σ-algebra on S.

• Because S = ∅c, we see that S ∈ B (because B is closed under complementation).
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• If A1, A2, ...,∈ B, then Ac1, A
c
2, ...,∈ B; see Property (ii);

=⇒
∞⋃
i=1

Aci ∈ B Property (iii)

=⇒

(
∞⋃
i=1

Aci

)c

=
∞⋂
i=1

Ai ∈ B DeMorgan’s Law; Property (ii)

Therefore, a σ-algebra B is also closed under countable intersections.

Examples:

1. B = {∅, S}. This is called the “trivial σ-algebra.”

2. B = {∅, A,Ac, S}. This is the smallest σ-algebra that contains A; denoted by σ(A).

3. |S| = n; i.e., the sample space is finite and contains n outcomes. Define

B = 2S

to be the set of all subsets of S. This is called the power set of S. If |S| = n, then
B = 2S contains 2n sets (this can be proven using induction).

Example 1.6. Suppose S = {1, 2, 3}. The power set of S is

B = 2S = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, S, ∅}

Note that B = 2S contains 23 = 8 sets.

Remark: For a given sample space S, there are potentially many σ-algebras. For example,
in Example 1.6, both

B0 = {∅, S}
B1 = {∅, {1}, {2, 3}, S}

are also σ-algebras on S. Note also that B0 ⊂ B1 ⊂ B = 2S. We call B0 and B1 sub-σ-
algebras of S.

Remark: We will soon learn that a σ-algebra contains all sets (events) to which we can
assign probability. To illustrate, with the (sub)-σ-algebra

B1 = {∅, {1}, {2, 3}, S},

we could assign a probability to the set {2, 3} because it is measurable with respect to this
σ-algebra. However, we could not assign a probability to the event {2} using B1; it is not
B1-measurable. Of course, {2} is B-measurable.
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Definition: Suppose S is a sample space. Let A be a collection of subsets of S. The σ-
algebra generated by A is the smallest σ-algebra that contains A. We denote this σ-algebra
by σ(A). In other words,

• A ⊂ σ(A), and

• if Σ(A) is another σ-algebra on S that contains A, then σ(A) ⊆ Σ(A).

Example 1.7. Suppose S = {1, 2, 3}. Suppose A = {1}. Then

σ(A) = σ({1}) = {∅, {1}, {2, 3}, S}.

Note that Σ(A) = 2S (the power set) also contains A. However, σ(A) ⊆ Σ(A).

Definition: Suppose S = R = (−∞,∞). Consider the collection of sets

A = {(a, b) : −∞ < a < b <∞},

that is, the collection of all open intervals on R. An important σ-algebra on R is σ(A). This
σ-algebra is called the Borel σ-algebra on R. Any set B ∈ σ(A) is called a Borel set.

Remark: The Borel σ-algebra on R is commonly denoted by B(R). It contains virtually
any subset of R that you could imagine; sets like [a, b], (a, b], [a, b), (−∞, b], and [a,∞), and
unions, intersections, and complements of these sets. It is possible to find subsets of R that
are not Borel sets. However, these are pathological in nature, and we will ignore them.

Kolmogorov’s Axioms: Suppose that S is a sample space and let B be a σ-algebra on S.
Let P be a set function; i.e.,

P : B → [0, 1],

that satisfies the following axioms:

1. P (A) ≥ 0, for all A ∈ B

2. P (S) = 1

3. If A1, A2, ...,∈ B are pairwise disjoint, then

P

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai).

We call P a probability set function (or a probability measure). The third axiom is
sometimes called the “Axiom of Countable Additivity.” The domain of P must be restricted
to a σ-algebra to avoid mathematical contradictions.
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Definition: The triple (S,B, P ) is called a probability space. It consists of

S = a sample space (collection of all outcomes)

B = a σ-algebra (collection of events to which you can assign probability)

P = a probability measure.

Example 1.8. Consider the probability space (S,B, P ), where

• S = {H,T}

• B = {∅, {H}, {T}, S}

• P : B → [0, 1], defined by P ({H}) = 2/3 and P ({T}) = 1/3.

This is a probability model for a random experiment where an unfair coin is flipped.

Example 1.9. Consider the probability space (S,B, P ), where

• S = (a, b), where −∞ < a < b <∞

• B = B(R) ∩ S = {B ∩ S : B ∈ B(R)}; i.e., the Borel sets on S

• P : B → [0, 1], defined for all A ∈ B,

P (A) =

∫
A

1

b− a
dx (“uniform” probability measure).

For example, suppose a = 0, b = 10, and A = {ω : 2 < ω ≤ 5}. Then P (A) = 3/10.

Theorem 1.2.6. Suppose that S = {ω1, ω2, ..., ωn} is a finite sample space. Let B be a
σ-algebra on S (e.g., B = 2S, etc.). We can construct a probability measure over B as follows:

1. Assign the “weight” or “mass” pi ≥ 0 to the outcome ωi where
∑n

i=1 pi = 1.

2. For any A ∈ B, define

P (A) =
n∑
i=1

piI(ωi ∈ A),

where I(·) is the indicator function; i.e.,

I(ωi ∈ A) =

{
1, ωi ∈ A
0, ωi /∈ A.

We now show that this “construction” of P satisfies the Kolmogorov Axioms on (S,B).
Proof. Suppose A ∈ B. By definition,

P (A) =
n∑
i=1

piI(ωi ∈ A) ≥ 0
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because both pi ≥ 0 and I(ωi ∈ A) ≥ 0 ∀i. This establishes Axiom 1. To establish Axiom
2, simply note that

P (S) =
n∑
i=1

piI(ωi ∈ S) =
n∑
i=1

pi = 1.

To establish Axiom 3, suppose that A1, A2, ..., Ak ∈ B are pairwise disjoint (a finite sequence
suffices here because S is finite). Note that

P

(
k⋃
j=1

Aj

)
=

n∑
i=1

piI

(
ωi ∈

k⋃
j=1

Aj

)

=
n∑
i=1

pi

k∑
j=1

I(ωi ∈ Aj)

=
k∑
j=1

n∑
i=1

piI(ωi ∈ Aj) =
k∑
j=1

P (Aj).

Therefore, the Kolmogorov Axioms are satisfied. 2

Special case: Suppose S = {ω1, ω2, ..., ωn}, B = 2S, and pi = 1/n for each i = 1, 2, ..., n.
That is, each outcome ωi ∈ S receives the same probability weight. This is called an
equiprobability model. Under an equiprobability model,

P (A) =
|A|
|S|

.

When outcomes (in a finite S) have the same probability, calculating P (A) is “easy.” We
simply have two counting problems to solve; the first where we count the number of outcomes
ωi ∈ A and the second where we count the number of outcomes ωi ∈ S.

Example 1.10. Draw 5 cards from a standard deck of 52 cards (without replacement).
What is the probability of getting “3 of a kind?” Here we can conceptualize the sample
space as

S = {[2S, 2D, 2H , 2C , 3S], [2S, 2D, 2H , 2C , 3D], ..., [AS,AD,AH ,AC ,KC ]}.

This is a finite sample space, and there are

|S| =
(

52

5

)
= 2598960

outcomes in S. Assume an equiprobability model with B = 2S. Define A = {3 of a kind}.
How many ways can A occur?

|A| =
(

13

1

)(
4

3

)(
12

2

)(
4

1

)2

= 54912.
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Therefore, assuming an equiprobability model,

P (A) =
54912

2598960
≈ 0.0211.

Remark: If |S| = n <∞, we call S a discrete sample space. We also use this terminology
if |S| = +∞, but S is countable, e.g., S = {ω1, ω2, ..., }. For a σ-algebra on S (e.g., B = 2S,
etc.), if we assign P ({ωi}) = pi ≥ 0, where

∑∞
i=1 pi = 1, the Kolmogorov Axioms are still

satisfied for this construction.

Example 1.11. Suppose that S = {1, 2, 3, ..., }, B = 2S, and

P ({i}) = pi = (1− p)i−1p,

where 0 < p < 1. This is called a geometric probability measure. Note that

P (S) =
∞∑
i=1

pi =
∞∑
i=1

(1− p)i−1p = p
∞∑
j=0

(1− p)j = p

[
1

1− (1− p)

]
= 1.

The Calculus of Probabilities: We now examine many results that follow from the Kol-
mogorov Axioms. In what follows, let S denote a sample space, B denote a σ-algebra on
S, and P denote a probability measure. All events (e.g., A, B, C, etc.) are assumed to be
measurable (i.e., A ∈ B, etc).

Theorem 1.2.8.

(a) P (∅) = 0

(b) P (A) ≤ 1

(c) Complement Rule: P (Ac) = 1− P (A).

Proof. To prove part (c), write S = A∪Ac and apply Axioms 2 and 3. Part (b) then follows
from Axiom 1. To prove part (a), note that Sc = ∅ and use part (c). 2

Theorem 1.2.9.

(a) P (Ac ∩B) = P (B)− P (A ∩B)

(b) Inclusion-Exclusion: P (A ∪B) = P (A) + P (B)− P (A ∩B)

(c) Monotonicity: If A ⊆ B, then P (A) ≤ P (B).

Proof. To prove part (a), write B = (A ∩ B) ∪ (Ac ∩ B) and apply Axiom 3. To prove
part (b), write A ∪ B = A ∪ (Ac ∩ B) and combine with part (a). To prove part (c), write
B = A ∪ (Ac ∩B). This is true because A ⊆ B by assumption. 2
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Remark: The identity

P (A ∪B) = P (A) + P (B)− P (A ∩B)

is called the inclusion-exclusion identity (for two events). Because P (A∪B) ≤ 1, it follows
immediately that

P (A ∩B) ≥ P (A) + P (B)− 1.

This is a special case of Bonferroni’s Inequality (for two events).

Theorem 1.2.11.

(a) P (A) =
∑∞

i=1 P (A ∩ Ci), where C1, C2, ..., is any partition of S.

(b) Boole’s Inequality: For any sequence A1, A2, ...,

P

(
∞⋃
i=1

Ai

)
≤

∞∑
i=1

P (Ai).

Proof. To prove part (a), write

A = A ∩ S = A ∩

(
∞⋃
i=1

Ci

)
=
∞⋃
i=1

(A ∩ Ci),

and apply Axiom 3. We will prove Boole’s Inequality later. 2

Two additional results:

1. Inclusion-Exclusion: For any sequence A1, A2, ..., An,

P

(
n⋃
i=1

Ai

)
=

n∑
i=1

P (Ai)−
∑∑
i1<i2

P (Ai1 ∩ Ai2)

+
∑∑∑
i1<i2<i3

P (Ai1 ∩ Ai2 ∩ Ai3)− · · ·+ (−1)n+1P

(
n⋂
i=1

Ai

)
.

2. Continuity: If An → A, as n→∞, then P (An)→ P (A); i.e.,

lim
n→∞

P (An) = P
(

lim
n→∞

An

)
= P (A).

Proof of Inclusion-Exclusion. If ω /∈ Ai ∀i = 1, 2, ..., n, then LHS = RHS = 0 and the result
holds. Otherwise, suppose that ω is in exactly m > 0 of the events A1, A2, ..., An. Clearly,
ω ∈ ∪ni=1Ai so the probability associated with ω is counted once on the LHS. For the RHS,
consider the k-fold intersection Ai1∩Ai2∩· · ·∩Aik , where i1 < i2 < · · · < ik and k ≤ m. The

PAGE 12



STAT 712: CHAPTER 1 JOSHUA M. TEBBS

outcome ω is in exactly
(
m
k

)
intersections of this type. Therefore, the probability associated

with ω is counted (
m

1

)
−
(
m

2

)
+

(
m

3

)
− · · · ±

(
m

m

)
times on the RHS. Therefore, it suffices to show that

1 =

(
m

1

)
−
(
m

2

)
+

(
m

3

)
− · · · ±

(
m

m

)
or, equivalently,

∑m
i=0

(
m
i

)
(−1)i = 0. However, this is true from the binomial theorem;

viz.,

(a+ b)m =
m∑
i=0

(
m

i

)
aibm−i,

by taking a = −1 and b = 1. Because ω was arbitrarily chosen, we are done. 2

Proof of Continuity. Although this result does hold in general, we will assume that {An} is
monotone increasing (non-decreasing). Recall that if {An} is increasing, then

lim
n→∞

An =
∞⋃
i=1

Ai.

Define the “ring-type” sets R1 = A1, R2 = A2 ∩Ac1, R3 = A3 ∩Ac2, ..., and so on. In general,

Rn = An ∩ Acn−1,

for n = 2, 3, ...,. It is easy to see that Ri ∩ Rj = ∅ ∀i 6= j (i.e., the ring sets are pairwise
disjoint) and

∞⋃
n=1

An =
∞⋃
n=1

Rn.

Therefore,

P
(

lim
n→∞

An

)
= P

(
∞⋃
n=1

An

)
= P

(
∞⋃
n=1

Rn

)
=
∞∑
n=1

P (Rn) = lim
n→∞

n∑
j=1

P (Rj). (1.1)

Now, recall that P (R1) = P (A1) and that P (Rj) = P (Aj ∩ Acj−1) = P (Aj) − P (Aj−1) by
Theorem 1.2.9 (a). Therefore, the expression in Equation (1.1) equals

lim
n→∞

{
P (A1) +

n∑
j=2

[P (Aj)− P (Aj−1)]

}
= lim

n→∞
P (An).

We have shown that P (limn→∞An) = limn→∞ P (An). Thus, we are done. 2

Remark: As an exercise, try to establish the continuity result when {An} is a decreasing
(non-increasing) sequence. The result does hold in general and would be proven in a more
advanced course.
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Proof of Boole’s Inequality. Define Bn = ∪ni=1Ai. Clearly, {Bn} is an increasing sequence of
sets and Bn → ∪∞n=1An, as n→∞. Note that

Bj = Bj−1 ∪ Aj =⇒ P (Bj) ≤ P (Bj−1) + P (Aj)

=⇒ P (Aj) ≥ P (Bj)− P (Bj−1).

We have

P

(
∞⋃
n=1

An

)
= P

(
∞⋃
n=1

Bn

)
= P

(
lim
n→∞

Bn

)
= lim

n→∞
P (Bn)

because {Bn} is increasing. However, note that

P (Bn) = P (B1) +
n∑
j=2

[P (Bj)− P (Bj−1)] ≤ P (A1) +
n∑
j=2

P (Aj) =
n∑
j=1

P (Aj).

Taking limits, we have

lim
n→∞

P (Bn) ≤ lim
n→∞

n∑
j=1

P (Aj) =
∞∑
n=1

P (An). 2

Bonferroni’s Inequality: Suppose that A1, A2, ..., An is a sequence of events. Then

P

(
n⋂
i=1

Ai

)
≥

n∑
i=1

P (Ai)− (n− 1).

Proof. By Boole’s Inequality (applied to the sequence Ac1, A
c
2, ..., A

c
n),

P

(
n⋃
i=1

Aci

)
≤

n∑
i=1

P (Aci).

Recalling that
⋃n
i=1A

c
i = (

⋂n
i=1Ai)

c
and P (Aci) = 1− P (Ai), the last inequality becomes

1− P

(
n⋂
i=1

Ai

)
≤ n−

n∑
i=1

P (Ai).

Rearranging terms gives the result. 2

Example 1.12. The matching problem. At a party, suppose that each of n men throws his
hat into the center of a room. The hats are mixed up and then each man randomly selects
a hat. What is the probability that at least one man selects his own hat? In other words,
what is the probability that there is at least one “match?”
Solution: We can conceptualize the sample space as the set of all permutations of {1, 2, ..., n}.
There are n! such permutations. We assume that each of the n! permutations is equally
likely. In notation, S = {ω1, ω2, ..., ωN}, where ωj is the jth permutation of {1, 2, ..., n}
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and N = n!. Define the event Ai = {ith man selects his own hat} and the event A =
{at least one match} so that

A =
n⋃
i=1

Ai =⇒ P (A) = P

(
n⋃
i=1

Ai

)
.

We now use inclusion-exclusion. Note the following:

P (Ai) =
(n− 1)!

n!
=

1

n
∀i = 1, 2, ..., n

P (Ai1 ∩ Ai2) =
(n− 2)!

n!
1 ≤ i1 < i2 ≤ n

P (Ai1 ∩ Ai2 ∩ Ai3) =
(n− 3)!

n!
1 ≤ i1 < i2 < i3 ≤ n

This pattern continues; the probability of the n-fold intersection is

P

(
n⋂
i=1

Ai

)
=

(n− n)!

n!
=

1

n!
.

Therefore, by inclusion-exclusion, we have

P

(
n⋃
i=1

Ai

)
=

n∑
i=1

P (Ai)−
∑∑
i1<i2

P (Ai1 ∩ Ai2)

+
∑∑∑
i1<i2<i3

P (Ai1 ∩ Ai2 ∩ Ai3)− · · ·+ (−1)n+1P

(
n⋂
i=1

Ai

)

= n

(
1

n

)
−
(
n

2

)
(n− 2)!

n!
+

(
n

3

)
(n− 3)!

n!
− · · ·+ (−1)n+1 1

n!

=
n∑
k=1

(−1)k+1

(
n

k

)
(n− k)!

n!

=
n∑
k=1

(−1)k+1 n!

k!(n− k)!

(n− k)!

n!
= 1−

n∑
k=0

(−1)k

k!
.

Interestingly, note that as n→∞,

lim
n→∞

P

(
n⋃
i=1

Ai

)
= lim

n→∞

[
1−

n∑
k=0

(−1)k

k!

]
= 1−

∞∑
k=0

(−1)k

k!
= 1− e−1 ≈ 0.6321.

Some view this answer to be unexpected, believing that this probability should tend to zero
(because the number of attendees becomes large) or that it should tend to one (because
there are more opportunities for a match). The truth lies somewhere in the middle.

Recall: The McLaurin series expansion of f(x) = ex is

ex =
∞∑
k=0

xk

k!
= 1 + x+

x2

2
+
x3

6
+ · · ·+ .

Exercise: Define B = {exactly k men select their own hats}. Find P (B) for n large (rela-
tive to k). Answer: e−1/k!.
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1.3 Conditional Probability and Independence

Definition: Consider a random experiment described by (S,B, P ). The conditional proba-
bility of A ∈ B, given that B ∈ B has occurred, can be computed

• over (S,B, P ) using

P (A|B) =
P (A ∩B)

P (B)

• over (B,B∗, PB), where B∗ = {B ∩ C : C ∈ B} and where PB and P (·|B) are related
by

P (A|B) = PB(A ∩B) ∀(A ∩B) ∈ B∗.

Exercise: Show that B∗ is a σ-algebra on B.

Example 1.13. Experiment: Toss two coins. Assume the model

S = {(HH), (HT), (TH), (TT)}
B = 2S

P = equiprobability measure; i.e., P ({ω}) = 1/4, for all ω ∈ S.

Define

A = {(HH), (HT)}
B = {(HH), (HT), (TH)}.

We can calculate P (A|B) in our two ways:

• Over (S,B, P ),

P (A|B) =
P (A ∩B)

P (B)
=
P (A)

P (B)
=

2/4

3/4
=

2

3
.

• Over (B,B∗, PB), where

B∗ = {B ∩ C : C ∈ B}
= {∅,B, {(HH)}, {(HT)}, {(TH)}, {(HH), (HT)}, {(HH), (TH)}, {(HT), (TH)}}

and PB is an equiprobability measure; i.e., PB({ω}) = 1/3 ∀ω ∈ B. Note that B∗ has
23 = 8 sets and that B∗ ⊂ B. We see that

P (A|B) = PB(A ∩B) = PB({(HH), (HT)}) =
2

3
.

Remark: In practice, it is often easier to work on (S,B, P ), the original probability space,
and compute conditional probabilities using

P (A|B) =
P (A ∩B)

P (B)
.
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If P (B) = 0, then P (A|B) is not defined. Provided that P (B) > 0, the probability measure
P (·|B) satisfies the Kolmogorov Axioms; i.e.,

1. P (A|B) ≥ 0, for all A ∈ B

2. P (B|B) = 1

3. If A1, A2, ...,∈ B are pairwise disjoint, then

P

(
∞⋃
i=1

Ai

∣∣∣∣∣B
)

=
∞∑
i=1

P (Ai|B).

Proving this is left as an exercise.

Important: Because P (·|B) is a bona fide probability measure on (S,B), it satisfies all of
the probability rules that we stated and derived in §1.2. For example,

1. P (Ac|B) = 1− P (A|B)

2. P (A1 ∪ A2|B) = P (A1|B) + P (A2|B)− P (A1 ∩ A2|B)

3. For any sequence A1, A2, ...,

P

(
∞⋃
i=1

Ai

∣∣∣∣∣B
)
≤

∞∑
i=1

P (Ai|B).

These are the “conditional versions” of the complement rule, inclusion-exclusion, and Boole’s
Inequality, respectively.

Law of Total Probability: Suppose (S,B, P ) is a model for a random experiment. Let
B1, B2, ...,∈ B denote a partition of S; i.e., Bi ∩Bj = ∅ ∀i 6= j and ∪∞i=1Bi = S. Then,

P (A) =
∞∑
i=1

P (A ∩Bi) =
∞∑
i=1

P (A|Bi)P (Bi).

The first equality is simply Theorem 1.2.11(a). The second equality arises by noting that

P (A|Bi) =
P (A ∩Bi)

P (Bi)
=⇒ P (A ∩Bi) = P (A|Bi)P (Bi)︸ ︷︷ ︸

“multiplication rule”

.

Example 1.14. Diagnostic testing. A lab test is 95% effective at detecting a disease when
it is present. It is 99% effective at declaring a subject negative when the subject is truly
negative. If 8% of the population is truly positive, what is the probability a randomly
selected subject will test positively?
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Solution. Define the events

D = {disease is present}
z = {test is positive}.

We are given

P (z|D) = 0.95 (sensitivity)

P (zc|Dc) = 0.99 (specificity)

P (D) = 0.08 (prevalence)

The probability a randomly selected subject will test positively is

P (z) = P (z|D)P (D) + P (z|Dc)P (Dc)

= (0.95)(0.08) + (0.01)(0.92) ≈ 0.0852.

Note that we have used LOTP with the partition {D,Dc}.

Question: What is the probability that a subject has the disease (D) if his test is positive?
Solution. We want to calculate

P (D|z) =
P (D ∩z)

P (z)

=
P (z|D)P (D)

P (z|D)P (D) + P (z|Dc)P (Dc)

=
(0.95)(0.08)

(0.95)(0.08) + (0.01)(0.92)
≈ 0.892.

Note: P (D|z) in this example is called the positive predictive value (PPV). As an
exercise, calculate P (Dc|zc), the negative predictive value (NPV).

Remark: We have just discovered a special case of Bayes’ Rule, which allows us to
“update” probabilities on the basis of observed information (here, the test result):

Prior probability Test result Posterior probability
P (D) = 0.08 −→ z −→ P (D|z) ≈ 0.892
P (D) = 0.08 −→ zc −→ P (D|zc) ≈ 0.004

Bayes’ Rule: Suppose (S,B, P ) is a model for a random experiment. Let B1, B2, ...,∈ B
denote a partition of S. Then,

P (Bi|A) =
P (A|Bi)P (Bi)∑∞
j=1 P (A|Bj)P (Bj)

.

This formula allows us to update our belief about the probability of Bi on the basis of
observing A. In general,

P (Bi) −→ A occurs −→ P (Bi|A).
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Multiplication Rule: For two events A, B ∈ B,

P (A ∩B) = P (A|B)P (B)

= P (B|A)P (A).

For n events A1, A2, ..., An ∈ B,

P

(
n⋂
i=1

Ai

)
= P (Ai)× P (A2|A1)× P (A3|A1 ∩ A2)× · · · × P

(
An

∣∣∣∣∣
n−1⋂
i=1

Ai

)
.

Proving this is an easy induction argument.

Definition: Two events A, B ∈ B are independent if

P (A ∩B) = P (A)P (B).

This definition implies (if conditioning events have strictly positive probability):

P (A|B) = P (A)

P (B|A) = P (B).

Theorem 1.3.9. If A, B ∈ B are independent events, then so are

(a) A and Bc

(b) Ac and B

(c) Ac and Bc.

Generalization: A collection of events A1, A2, ..., An ∈ B are mutually independent if
for any sub-collection Ai1 , Ai2 , ..., Aik , we have

P

(
k⋂
j=1

Aij

)
=

k∏
j=1

P (Aij).

Special case: Three events A1, A2, and A3. For these events to be mutually independent,
we need them to be pairwise independent:

P (A1 ∩ A2) = P (A1)P (A2)

P (A1 ∩ A3) = P (A1)P (A3)

P (A2 ∩ A3) = P (A2)P (A3)

and we also need P (A1 ∩ A2 ∩ A3) = P (A1)P (A2)P (A3). Note that is possible for

• A1, A2, and A3 to be pairwise independent but P (A1 ∩A2 ∩A3) 6= P (A1)P (A2)P (A3).
See Example 1.3.11 (pp 26 CB).

PAGE 19



STAT 712: CHAPTER 1 JOSHUA M. TEBBS

• P (A1∩A2∩A3) = P (A1)P (A2)P (A3) but A1, A2, and A3 are not pairwise independent.
See Example 1.3.10 (pp 25-26 CB).

Example 1.15. Experiment: Observe the chlamydia status of n = 30 USC students. Here,
we can conceptualize the sample space as

S = {(0, 0, 0, ..., 0), (1, 0, 0, ..., 0), (0, 1, 0, ..., 0), ..., (1, 1, 1, ..., 1)},

where “0” denotes a negative student and “1” denotes a positive student. Note that there are
|S| = 230 = 1,073,741,824 outcomes in S. Suppose that B = 2S and that P is a probability
measure that satisfies P (Ai) = p, where Ai = {ith student is positive}, for i = 1, 2, ..., 30,
and 0 < p < 1. Assume that A1, A2, ..., A30 are mutually independent events.

Question: What is the probability that at least one student is positive?
Solution. Clearly, P (Aci) = 1− P (Ai) = 1− p, for i = 1, 2, ..., 30. Therefore,

P

(
30⋃
i=1

Ai

)
= 1− P

(
30⋂
i=1

Aci

)

= 1−
30∏
i=1

P (Aci)

= 1− (1− p)30.

Question: What is the probability that exactly k students are positive?
Solution. Consider any outcome ω ∈ S containing exactly k 1’s and 30 − k 0’s. Any such
outcome has probability pk(1−p)30−k because individual statuses are mutually independent.
Because there are

(
30
k

)
such ω’s in S that have exactly k 1’s, the desired probability is(

30

k

)
pk(1− p)30−k.

This expression is valid for k = 0, 1, 2, ..., 30. For example, if p = 0.10 and k = 3, then
P (exactly 3 positives) ≈ 0.236.

1.4 Random Variables

Remark: In Example 1.15, the underlying sample space

S = {(0, 0, 0, ..., 0), (1, 0, 0, ..., 0), (0, 1, 0, ..., 0), ..., (1, 1, 1, ..., 1)}

contained |S| = 230 = 1,073,741,824 outcomes. In most situations, it is easier to work with
numerical valued functions of the outcomes, such as

X = number of positives (out of 30).
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We see that the “sample space” for X is

X = {x : x = 0, 1, 2, ..., 30}.

Note that X is much easier to work with than S.

Definition: Let (S,B, P ) be a probability space for a random experiment. The function

X : S → R

is called a random variable on (S,B, P ) if

X−1(B) ≡ {ω ∈ S : X(ω) ∈ B} ∈ B (1.2)

for all B ∈ B(R), where B(R) is the Borel σ-algebra on R. The set X−1(B) is called the
inverse image of B (under the mapping X). The condition in (1.2) says that the inverse
image of any Borel set B is measurable with respect to B. Note that the notion of probability
does not enter into the condition in (1.2).

Remark: The main point is that a random variable X, mathematically, is a function whose
domain is S and whose range is R. For example, in Example 1.15,

X((0, 0, 0, ..., 0)) = 0

X((1, 0, 0, ..., 0)) = 1

X((1, 1, 1, ..., 1)) = 30.

Notes: Suppose that X is a random variable on (S,B, P ); i.e., X : S → R.

1. The collection of sets σ(X) ≡ {X−1(B) : B ∈ B(R)} is a σ-algebra on S.

2. The measurability condition

X−1(B) ≡ {ω ∈ S : X(ω) ∈ B} ∈ B,

for all B ∈ B(R), suggests that events of interest like {X ∈ B} on (R,B(R)) can
be assigned probability in the same way that {ω ∈ S : X(ω) ∈ B} can be assigned
probability on (S,B).

3. In a more advanced course, we might say that “X is a B − B(R) measurable mapping
from S → R.”

Example 1.16. Consider a random experiment with

S = {1, 2, 3}
B1 = {∅, {1}, {2, 3}, S}
P = equiprobability measure; i.e., P ({ω}) = 1/3, for all ω ∈ S.
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Define the function X so that X(1) = X(2) = 0 and X(3) = 1. Consider the Borel set
B = {0}. Note that

X−1(B) = X−1({0}) = {ω ∈ S : X(ω) = 0} = {1, 2} /∈ B1.

Therefore, the function X is not a random variable on (S,B1). It does not satisfy the
measurability condition. Question: Is X a random variable on (S,B), where B = 2S?

Discrete sample spaces: Consider an experiment described by (S,B, P ) where

S = {ω1, ω2, ..., ωn}
B = 2S

P = a valid probability measure.

Here, we allow for both cases:

• n <∞ =⇒ S finite

• “n =∞” =⇒ S countable (i.e., countably infinite).

Suppose X is a random variable on (S,B, P ) with range X = {x1, x2, ..., xm}. We call X the
support of the random variable X; we allow for both cases:

• m <∞ =⇒ “finite support”

• “m =∞” =⇒ “countably infinite support.”

Define a new probability measure PX according to

PX(X = xi) = P ({ω ∈ S : X(ω) = xi})︸ ︷︷ ︸
a probability on (S,B)

.

We call PX an induced probability measure, because it is a measure “induced” by
the random variable X. It is a probability measure on (R,B(R)), and (R,B(R), PX) is a
probability space. We often use the terminology:

(S,B, P ) =⇒ domain space

(R,B(R), PX) =⇒ range space.

Remark: The probability measure PX on (R,B(R)) satisfies the Kolmogorov Axioms (i.e.,
it is a valid probability measure).

Example 1.17. Experiment: Toss a fair coin twice. Consider the model described by

S = {(HH), (HT), (TH), (TT)}
B = 2S

P = equiprobability measure; i.e., P ({ω}) = 1/4, for all ω ∈ S.

PAGE 22



STAT 712: CHAPTER 1 JOSHUA M. TEBBS

Define a random variable X on (S,B, P ) by

X = number of heads observed.

The random variable X satisfies

ω (HH) (HT) (TH) (TT)
X(ω) 2 1 1 0

Therefore, the support of X is X = {x : x = 0, 1, 2} and

PX(X = 0) = P ({ω ∈ S : X(ω) = 0}) = P ({(TT)}) =
1

4

PX(X = 1) = P ({ω ∈ S : X(ω) = 1}) = P ({(HT), (TH)}) =
2

4

PX(X = 2) = P ({ω ∈ S : X(ω) = 2}) = P ({(HH)}) =
1

4
.

We have the following probability distribution for the random variable X:

x 0 1 2
PX(X = x) 1/4 1/2 1/4

Important: We use upper case notation X to denote a random variable. A realization of
X is denoted by X(ω) = x (i.e., lower case).

Remark: In practice, we are often given the probability measure PX in the form of an
assumed probability distribution for X (e.g., binomial, normal, etc.) and our “starting
point” actually becomes (R,B(R), PX). For example, in Example 1.15, we calculated

PX(X = x) =

(
30

x

)
px(1− p)30−x,

for x ∈ X = {x : x = 0, 1, 2, ..., 30}. With this already available, there is little need to refer
to the underlying experiment described by (S,B, P ).

Example 1.18. Suppose that X denotes the systolic blood pressure for a randomly selected
patient. Suppose it is assumed that for all B ∈ B(R),

PX(B) ≡ PX(X ∈ B) =

∫
B

1√
2πσ

e−(x−µ)2/2σ2

︸ ︷︷ ︸
= fX(x), say.

dx.

The function fX(x) is given without reference to the underlying experiment (S,B, P ).

Remark: Suppose we have an experiment described by (S,B, P ), and let X : S → R be a
random variable defined on this space. The induced probability measure PX satisfies

PX(X ∈ B)︸ ︷︷ ︸
calculated on (R,B(R))

= P ({ω ∈ S : X(ω) ∈ B})︸ ︷︷ ︸
calculated on (S,B)

.
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We should remember that although P and PX are different probability measures, we will
start to get “lazy” and write things like P (X ∈ B), P (0 < X ≤ 4), P (X = 3), etc. Although
this is an abuse of notation, most textbook authors eventually succumb to this practice. In
fact, the authors of CB stop writing PX in favor of P after Chapter 1! In many ways, this is
not surprising if we “start” by working on (R,B(R)) to begin with. However, it is important
to remember that PX is a measure on (R,B(R)); not P as we have defined it herein.

1.5 Distribution Functions

Definition: The cumulative distribution function (cdf) of a random variable X is

FX(x) = PX(X ≤ x), for all x ∈ R.

It is important to emphasize that FX(x) is defined for all x ∈ R; not just for those values of
x ∈ X , the support of X.

Example 1.19. In Example 1.17, we worked with the random variable

X = number of heads observed (in two tosses)

and calculated

x 0 1 2
PX(X = x) 1/4 1/2 1/4

The cdf of X is therefore

FX(x) =


0, x < 0

1/4, 0 ≤ x < 1
3/4, 1 ≤ x < 2
1, x ≥ 2

and is graphed in Figure 1.1 (next page).

Theorem 1.5.3. The function FX : R→ [0, 1] is a cdf if and only if these conditions hold:

1. limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1

2. FX(x) is a non-decreasing function of x

3. FX(x) is right-continuous; i.e.,

lim
x→x+0

FX(x) = FX(x0) ∀x0 ∈ R.

An alternate definition of right continuity is that limn→∞ FX(xn) = FX(x0), for any
real sequence {xn} such that xn ↓ x0.
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Figure 1.1: Cumulative distribution function FX(x) in Example 1.19.

Remark: Proving the necessity part (=⇒) part of Theorem 1.5.3 is not hard (we do this
now). Establishing the sufficiency (⇐=) is harder. To do this, one would have to show there
exists a sample space S, a probability measure P , and a random variable X on (S,B, P )
such that FX(x) is the cdf of X. This argument involves measure theory, so we will avoid it.

Proof. (=⇒) Suppose that FX is a cdf. To establish (1), suppose that {xn} is an increasing
sequence of real numbers such that xn → ∞, as n → ∞. Then Bn = {X ≤ xn} is an
increasing sequence of sets and

lim
n→∞

Bn = lim
n→∞
{X ≤ xn} =

∞⋃
n=1

{X ≤ xn} = {X <∞}.

Therefore, using continuity of PX , we have

lim
n→∞

FX(xn) = lim
n→∞

PX(X ≤ xn) = PX

(
lim
n→∞
{X ≤ xn}

)
= PX(X <∞) = P (S) = 1.

Because {xn} was arbitrary, we have established that limx→∞ FX(x) = 1. Showing
limx→−∞ FX(x) = 0 is done similarly; just work with a decreasing sequence {xn}. To estab-
lish (2), suppose that x1 ≤ x2. Then {X ≤ x1} ⊆ {X ≤ x2} and by monotonicity of PX , we
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have
FX(x1) = PX(X ≤ x1) ≤ PX(X ≤ x2) = FX(x2).

Because x1 and x2 were arbitrary, this shows that FX(x) is a non-decreasing function of
x. To establish (3), suppose that {xn} is a decreasing sequence of real numbers such that
xn → x0, as n→∞. Then Cn = {X ≤ xn} is a decreasing sequence of sets and

lim
n→∞

Cn = lim
n→∞
{X ≤ xn} =

∞⋂
n=1

{X ≤ xn} = {X ≤ x0}.

Using continuity of PX again, we have

lim
n→∞

FX(xn) = lim
n→∞

PX(X ≤ xn) = PX

(
lim
n→∞
{X ≤ xn}

)
= PX(X ≤ x0) = FX(x0).

As x0 was arbitrary, this establishes (3) and we are done. 2

Example 1.20. Suppose that X is a random variable with cdf

FX(x) =

{
0, x ≤ 0

1− e−x/β, x > 0,

where β > 0. This cdf corresponds to an exponential distribution and is graphed in
Figure 1.2 (next page). It is easy to see that this function satisfies the three properties of a
cdf stated in Theorem 1.5.3. First, we have limx→−∞ FX(x) = 0, because FX(x) = 0 ∀x ≤ 0,
and

lim
x→∞

FX(x) = lim
x→∞

(1− e−x/β) = 1− lim
x→∞

e−x/β = 1,

because e−x/β → 0, as x → ∞. Second, FX(x) is clearly non-decreasing when x ≤ 0 (it is
constant). When x > 0,

d

dx
FX(x) =

d

dx
(1− e−x/β) =

1

β
e−x/β > 0 ∀x > 0.

Therefore, FX(x) is non-decreasing. Finally, FX(x) is a continuous function; therefore, it is
clearly right-continuous.

Definition: A random variable is discrete if FX(x) is a step function of x (see Example
1.19). A random variable X is continuous if FX(x) is a continuous function of x (see
Example 1.20). A random variable X whose cdf FX(x) contains both continuous and step
function pieces can be categorized as a mixture random variable.

Definition: Suppose X and Y are random variables defined on the same probability space
(S,B, P ). We say that X and Y are identically distributed if

PX(X ∈ B) = PY (Y ∈ B)

for all B ∈ B(R). We write X
d
= Y .
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Figure 1.2: Cumulative distribution function FX(x) in Example 1.20 when β = 2.

Note: Because (−∞, x] is a Borel set, we see that

X
d
= Y =⇒ FX(x) = FY (x) ∀x ∈ R.

Does this relationship go the other way? The answer is “yes,” but it is much harder to prove;
see Theorem 1.5.10 (pp 34 CB). Because of this equivalence, a random variable’s cdf FX(x)
completely determines its distribution.

Remark: When two random variables have the same (identical) distribution, this does not
mean that they are the same random variable! That is,

X
d
= Y 6=⇒ X = Y.

For example, suppose that

S = {(HH), (HT), (TH), (TT)}
B = 2S

P = equiprobability measure; i.e., P ({ω}) = 1/4, for all ω ∈ S.

If X denotes the number of heads and Y denotes the number of tails, it is easy to see that X

and Y have the same distribution, that is, X
d
= Y . However, 2 = X((HH)) 6= Y ((HH)) = 0,

for example, showing that X and Y are not everywhere equal.
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1.6 Density and Mass Functions

Review: Suppose that X is a random variable with cdf FX(x). Recall that

FX(x) = PX(X ≤ x), for all x ∈ R

and that FX(x) completely determines the distribution of X. Recall that

X discrete ⇐⇒ FX(x) is a step function

X continuous ⇐⇒ FX(x) is continuous.

Remark: Suppose X is a random variable with support X . If X is a countable set, then X
is discrete. This is an equivalent characterization to that given above. This implies that a
cdf FX(x) can have at most a countable number of discontinuities.

Definition: The probability mass function (pmf) of a discrete random variable X is
given by

fX(x) = PX(X = x), for all x.

Example 1.21. Suppose that X is a random variable with pmf

fX(x) =

 λxe−λ

x!
, x = 0, 1, 2, ...

0, otherwise,

where λ > 0. This is called a Poisson distribution. Note that X = {x : x = 0, 1, 2, ..., }
is countable. The pmf and cdf of X is shown in Figure 1.3 when λ = 5 (next page). An
expression for the cdf of X is

FX(x) =
∑
u:u≤x

fX(u) =
∑
u:u≤x

λue−λ

u!
.

In other words, the cdf FX(x) “adds up” all probabilities less than or equal to x. Here are
some calculations:

PX(X = 1) = fX(1) =
λ1e−λ

1!
= λe−λ

PX(X ≤ 1) = FX(1) = fX(0) + fX(1) =
λ0e−λ

0!
+
λ1e−λ

1!
= e−λ(1 + λ).

Note: In general, if X is a discrete random variable with pmf fX(x), then

PX(X ∈ B) =
∑
x∈B

fX(x) =
∑
x∈B

PX(X = x).

That is, we “add up” all probabilities corresponding to the support points x ∈ B. Of course,
if x /∈ X , then fX(x) = PX(X = x) = 0.
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Figure 1.3: Pmf (left) and cdf (right) of X ∼ Poisson(λ = 5) in Example 1.21.

Remark: We now transition to continuous random variables and prove an interesting fact
regarding them. Recall that the cdf of a continuous random variable is a continuous function.

Result: If X is a continuous random variable with cdf FX(x), then PX(X = x) = 0 ∀x ∈ R.
Proof. Suppose ε > 0 and note that {X = x} ⊆ {x − ε < X ≤ x}. Therefore, by
monotonicity,

PX(X = x) ≤ PX(x− ε < X ≤ x) = PX(X ≤ x)− PX(X ≤ x− ε) = FX(x)− FX(x− ε).

Because PX is a probability measure, we have

0 ≤ PX(X = x) ≤ lim
ε→0

[FX(x)− FX(x− ε)]

= FX(x)− lim
ε→0

FX(x− ε)

= FX(x)− FX(x) = 0,

because FX(x) is continuous. Therefore, we have shown that 0 ≤ PX(X = x) ≤ 0. Because
ε was arbitrary, we are done. 2

Remark: This result highlights the salient difference between discrete and continuous ran-
dom variables. Discrete random variables have positive probability assigned to support
points x ∈ X . Continuous random variables do not.

Definition: The probability density function (pdf) of a continuous random variable X
is function fX(x) that satisfies

FX(x) =

∫ x

−∞
fX(u)du,
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for all x ∈ R. If fX(x) is a continuous function, then

d

dx
FX(x) =

d

dx

∫ x

−∞
fX(u)du = fX(x).

This is a consequence of the Fundamental Theorem of Calculus. The support X of a
continuous random variable X is the set of all x ∈ R such that fX(x) > 0.

Example 1.22. The random variable X has probability density function (pdf)

fX(x) =
1

2
e−|x|, for x ∈ R.

(a) Find the cdf FX(x).
(b) Find PX(X > 5) and PX(−2 < X < 2).

Solution. (a) Recall that the cdf FX(x) is defined for all x ∈ R. Also, recall the absolute
value function

|x| =
{
−x, x < 0
x, x ≥ 0.

Case 1: For x < 0,

FX(x) =

∫ x

−∞
fX(u)du =

∫ x

−∞

1

2
eudu

=
1

2
eu
∣∣∣x
−∞

=
1

2
(ex − 0) =

1

2
ex.

Case 2: For x ≥ 0,

FX(x) =

∫ x

−∞
fX(u)du =

∫ 0

−∞
fX(u)du+

∫ x

0

fX(u)du

=

∫ 0

−∞

1

2
eudu+

∫ x

0

1

2
e−udu =

1

2
−
(

1

2
e−u
∣∣∣∣x
0

)
= 1− 1

2
e−x.

Summarizing, the cdf of X is

FX(x) =


1

2
ex, x < 0

1− 1

2
e−x, x ≥ 0.

The pdf and cdf of X are shown in Figure 1.4 (next page). This is an example of a LaPlace
distribution.
(b) The desired probabilities are

PX(X > 5) = 1− PX(X ≤ 5) = 1− FX(5) = 1−
(

1− 1

2
e−5

)
≈ 0.0034
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Figure 1.4: Pdf (left) and cdf (right) of X in Example 1.22.

and

PX(−2 < X < 2) = PX(−2 < X ≤ 2) = PX(X ≤ 2)− PX(X ≤ −2)

= FX(2)− FX(−2)

=

(
1− 1

2
e−2

)
− 1

2
e−2 = 1− e−2 ≈ 0.8647.

Remark: In the last calculation, note that we wrote

{X ≤ 2} = {X ≤ −2} ∪ {−2 < X ≤ 2}

Therefore,
PX(X ≤ 2) = PX(X ≤ −2) + PX(−2 < X ≤ 2)

and, after rearranging,

PX(−2 < X ≤ 2) = PX(X ≤ 2)− PX(X ≤ −2)

= FX(2)− FX(−2).

Result: If X is a continuous random variable with cdf FX(x) and pdf fX(x), then for any
a < b,

PX(a < X < b) = PX(a ≤ X < b) = PX(a < X ≤ b) = PX(a ≤ X ≤ b)

and each one equals

FX(b)− FX(a) =

∫ b

a

fX(x)dx.
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Theorem 1.6.5. A function fX(x) is a pdf (pmf) of a random variable X if and only if

(a) fX(x) ≥ 0, for all x ∈ R

(b) For a pmf or pdf, respectively,∑
x∈R

fX(x) = 1 or

∫
R
fX(x)dx = 1.

Proof. We first prove the necessity (=⇒). Suppose fX(x) is a pdf (pmf). For the discrete
case, fX(x) = PX(X = x) ≥ 0 and∑

x∈R

fX(x) =
∑
x∈X

PX(X = x) = P (S) = 1.

For the continuous case, fX(x) = (d/dx)FX(x) ≥ 0, because FX(x) is non-decreasing and∫
R
fX(x)dx = lim

x→∞

∫ x

−∞
fX(u)du = lim

x→∞
FX(x) = 1.

We have proven the necessity.

Remark: Proving the sufficiency (⇐=) is more difficult. For a function fX(x) satisfying (a)
and (b), we recall that

FX(x) =
∑
u:u≤x

fX(u) (discrete case)

FX(x) =

∫ x

−∞
fX(u)du (continuous case).

In essence, we can write both of these expressions generally as the same expression

FX(x) =

∫ x

−∞
fX(u)du.

If X is discrete, then FX(x) is an integral with respect to a counting measure; that is,
FX(x) is the sum over all u satisfying u ≤ x. Thus, to establish the sufficiency part, it
suffices to show that FX(x) defined above satisfies the three cdf properties in Theorem 1.5.3
(i.e., “end behavior” limits, non-decreasing, right-continuity). We do this now. First, note
that

lim
x→−∞

FX(x) = lim
x→−∞

∫ x

−∞
fX(u)du

= lim
x→−∞

∫
R
fX(u)I(u ≤ x)du,

where the indicator function

I(u ≤ x) =

{
1, u ≤ x
0, u > x
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is regarded as a function of u. In the last integral, note that we can take the integrand and
write

fX(u)I(u ≤ x) ≤ fX(u)

for all u ∈ R because fX(x) ≥ 0, by assumption, and also that
∫
R fX(x)dx = 1 < ∞.

Therefore, we have “dominated” the integrand in

lim
x→−∞

∫
R
fX(u)I(u ≤ x)du

above by a function that is integrable over R. This, by means of the Dominated Conver-
gence Theorem, allows us to interchange the limit and integral as follows:

lim
x→−∞

∫
R
fX(u)I(u ≤ x)du =

∫
R
fX(u) lim

x→−∞
I(u ≤ x)︸ ︷︷ ︸
= 0

du = 0.

We have shown that limx→−∞ FX(x) = 0. Showing limx→∞ FX(x) = 1 is done analogously
and is therefore left as an exercise. To show that FX(x) is non-decreasing, suppose that
x1 ≤ x2. It suffices to show that FX(x1) ≤ FX(x2). Note that

FX(x1) =

∫ x1

−∞
fX(u)du ≤

∫ x2

−∞
fX(u)du = FX(x2),

because fX(u) ≥ 0, by assumption (i.e., if you integrate a non-negative function over a
“larger” set, the integral cannot decrease). Finally, to prove that FX(x) is right-continuous,
it suffices to show that

lim
x→x+0

FX(x) = FX(x0).

Note that

lim
x→x+0

FX(x) = lim
x→x+0

∫ x

−∞
fX(u)du = lim

x→x+0

∫
R
fX(u)I(u ≤ x)du

DCT
=

∫
R
fX(u) lim

x→x+0
I(u ≤ x)du.

It is easy to see that I(u ≤ x), now viewed as a function of x, is right-continuous. Therefore,∫
R
fX(u) lim

x→x+0
I(u ≤ x)du =

∫
R
fX(u)I(u ≤ x0)du

=

∫ x0

−∞
fX(u)du = FX(x0).

We have shown that FX(x) satisfies the three cdf properties in Theorem 1.5.3. Thus, we are
done. 2

Remark: As noted on pp 37 (CB), there do exist random variables for which the relationship

FX(x) =

∫ x

−∞
fX(u)du

does not hold for any function fX(x). In a more advanced course, it is common to use the
phrase “absolutely continuous” to refer to a random variable where this relationship holds;
i.e., the random variable does, in fact, have a pdf fX(x).
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2 Transformations and Expectations

Complementary reading: Chapter 2 (CB). Sections 2.1-2.3.

2.1 Distributions of Functions of a Random Variable

Remark: Suppose that X is a random variable defined over (S,B, P ), that is, X : S → R
with the property that

X−1(B) ≡ {ω ∈ S : X(ω) ∈ B} ∈ B

for all B ∈ B(R). Going forward, we will rarely acknowledge explicitly the underlying
probability space (S,B, P ). In essence, we will consider the probability space (R,B(R), PX)
to be the “starting point.”

Question: If X is a random variable, then so is

Y = g(X),

where g : R → R. A central question becomes this: “If I know the distribution of X, can I
find the distribution of Y = g(X)?”

Note: For any A ⊆ R in the range space of g, note that

PY (Y ∈ A) = PX(g(X) ∈ A) = PX(X ∈ g−1(A)),

where g−1(A) = {x ∈ X : g(x) ∈ A}, the inverse image of A under g. This shows that, in
general, the distribution of Y depends on FX (the distribution of X) and g.

Remark: In this course, we will consider g to be a real-valued function and will write
g : R→ R to emphasize this. However, the function g for our purposes is really a mapping
from X (the support of X) to Y , that is,

g : X → Y ,

where Y = {y : y = g(x), x ∈ X} is the support of Y .

Discrete case: Suppose that X is a discrete random variable (so that X is at most count-
able). Then Y is also a discrete random variable and the probability mass function (pmf) of
Y is

fY (y) = PY (Y = y) = PX(g(X) = y) = PX(X = g−1(y)) =
∑

x∈X :g(x)=y

fX(x).

Above, the symbol g−1(y) is understood to mean

g−1(y) = {x ∈ X : g(x) = y},
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the inverse image of the singleton {y}. In other words, g−1(y) is the set of all x ∈ X that
get “mapped” into y under g. If there is always only one x ∈ X that satisfies g(x) = y, then
g−1(y) = {x}, also a singleton. This occurs when g is a one-to-one function on X .

Example 2.1. Suppose that X is a discrete random variable with pmf

fX(x) =


(
n

x

)
px(1− p)n−x, x = 0, 1, 2, ..., n

0, otherwise,

where 0 < p < 1. We say that X follows a binomial distribution.

Note: As a frame of reference (for where this distribution arises), envision a sequence
of independent 0-1 “trials” (0 = failure; 1 = success), and let X denote the number of
“successes” out of these n trials. We write X ∼ b(n, p). Note that the support of X is
X = {x : x = 0, 1, 2, ..., n}.

Question: What is the distribution of

Y = g(X) = n−X?

Note that the support of Y is given by

Y = {y : y = g(x), x ∈ X} = {y : y = 0, 1, 2, ..., n}.

Also, g(x) = n− x is a one-to-one function over X (it is a linear function of x). Therefore,

y = g(x) = n− x ⇐⇒ x = g−1(y) = n− y.

Therefore, the pmf of Y , for y = 0, 1, 2, ..., n, is given by

fY (y) = PY (Y = y) = PX(n−X = y) = PX(X = n− y)

= fX(n− y)

=

(
n

n− y

)
pn−y(1− p)n−(n−y)

=

(
n

y

)
(1− p)ypn−y.

That is,

fY (y) =


(
n

y

)
(1− p)ypn−y, y = 0, 1, 2, ..., n

0, otherwise.

We recognize this as a binomial pmf with “success probability” 1 − p. We have therefore
shown that

X ∼ b(n, p) =⇒ Y = g(X) = n−X ∼ b(n, 1− p).
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Figure 2.1: A graph of g(x) = x(1− x) over X = {x : 0 < x < 1} in Example 2.2.

Continuous case: Suppose X and Y are continuous random variables, where Y = g(X).
The cumulative distribution function (cdf) of Y can be written as

FY (y) = PY (Y ≤ y) = PX(g(X) ≤ y)

=

∫
B

fX(x)dx,

where the set B = {x ∈ X : g(x) ≤ y}. Therefore, finding the cdf of Y is straightforward
conceptually. However, care must be taken in identifying the set B above.

Example 2.2. Suppose that X has pdf

fX(x) =

{
1, 0 < x < 1
0, otherwise.

This is a uniform distribution with support X = {x : 0 < x < 1}. We now derive the
distribution of

Y = g(X) = X(1−X).

Remark: Whenever you derive the distribution of a function of a random variable, it is
helpful to first construct the graph of g(x) over its domain; that is, over X , the support of
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X. See Figure 2.1. Doing so allows you to also determine the support of Y = g(X). Note
that 0 < x < 1 =⇒ 0 < y < 1

4
. Therefore, the support of Y is Y = {y : 0 < y < 1

4
}.

Important: Note that, for 0 < y < 1
4
,

{Y ≤ y} = {X ≤ x1} ∪ {X ≥ x2},

where g−1({y}) = {x1, x2}. Therefore, for 0 < y < 1
4
, the cdf of Y is

FY (y) = PY (Y ≤ y) = PX(X ≤ x1) + PX(X ≥ x2)

=

∫ x1

0

1dx+

∫ 1

x2

1dx,

where x1 and x2 both satisfy y = g(x) = x(1−x). We can find x1 and x2 using the quadratic
formula:

y = g(x) = x(1− x) =⇒ − x2 + x− y = 0.

The roots of this equation are

x =
−1±

√
(1)2 − 4(−1)(−y)

2(−1)

=
1

2
±
√

1− 4y

2

(x1 is the root with the negative sign; x2 is the root with the positive sign). Therefore, for
0 < y < 1

4
,

FY (y) = PY (Y ≤ y) =

∫ 1
2
−
√
1−4y
2

0

1dx+

∫ 1

1
2

+
√
1−4y
2

1dx

=
1

2
−
√

1− 4y

2
+ 1− 1

2
−
√

1− 4y

2

= 1−
√

1− 4y.

Summarizing,

FY (y) =


0, y ≤ 0

1−
√

1− 4y, 0 < y < 1
4

1, y ≥ 1
4
.

It is easy to show that this cdf satisfies the three cdf properties in Theorem 1.5.3 (i.e., “end
behavior” limits, non-decreasing, right-continuity). The probability density function (pdf)
of Y is therefore

fY (y) =
d

dy
FY (y)

=

{
2(1− 4y)−1/2, 0 < y < 1

4

0, otherwise.
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Figure 2.2: Pdf of X (left) and pdf of Y (right) in Example 2.2.

We can write this succinctly as

fY (y) = 2(1− 4y)−1/2I(0 < y < 1/4),

where I(·) is the indicator function. In Figure 2.2, we plot the pdf of X and the pdf of Y side
by side. Doing so is instructive because it allows us to see what effect the transformation g
has on the original distribution fX(x).

Monotone transformations: In Example 2.2, we see that y = g(x) = x(1 − x) is not
a one-to-one function over X = {x : 0 < x < 1}. In general, when Y = g(X) and g is
one-to-one over X , we can get the pdf of Y easily (in terms of the pdf of X).

Recall: By “one-to-one,” we mean that either (a) g is strictly increasing over X or (b) g is
strictly decreasing over X . Summarizing,

• Strictly increasing: x1 < x2 ⇒ g(x1) < g(x2); if g is differentiable, g′(x) > 0 ∀x ∈ X .

• Strictly decreasing: x1 < x2 ⇒ g(x1) > g(x2); if g is differentiable, g′(x) < 0 ∀x ∈ X .

Case 1: If g is strictly increasing, then

FY (y) = PY (Y ≤ y) = PX(g(X) ≤ y)

= PX(X ≤ g−1(y))

= FX(g−1(y)).
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The penultimate equality results from noting that {x : g(x) ≤ y} = {x : x ≤ g−1(y)}. We
have shown that

FY (y) = FX(g−1(y)), when g is strictly increasing.

Taking derivatives, the pdf of Y (where nonzero) is

fY (y) =
d

dy
FY (y) =

d

dy
FX(g−1(y))

= fX(g−1(y))
d

dy
g−1(y)︸ ︷︷ ︸
> 0

.

Recall: From calculus, recall that if g is strictly increasing (decreasing), then g−1 is strictly
increasing (decreasing).

Case 2: If g is strictly decreasing, then

FY (y) = PY (Y ≤ y) = PX(g(X) ≤ y)

= PX(X ≥ g−1(y))

= 1− FX(g−1(y)).

Again, the penultimate equality results from noting that {x : g(x) ≤ y} = {x : x ≥ g−1(y)}.
We have shown that

FY (y) = 1− FX(g−1(y)), when g is strictly decreasing.

Taking derivatives, the pdf of Y (where nonzero) is

fY (y) =
d

dy
FY (y) =

d

dy

[
1− FX(g−1(y))

]
= −fX(g−1(y))

d

dy
g−1(y)︸ ︷︷ ︸
< 0

.

Combining both cases, we arrive at the following result.

Theorem 2.1.5. Let X have pdf fX(x) and let Y = g(X), where g is one-to-one over X
(the support of X). If fX(x) is continuous on X and g−1(y) has a continuous derivative,
then the pdf of Y is

fY (y) = fX(g−1(y))

∣∣∣∣ ddyg−1(y)

∣∣∣∣
for values of y ∈ Y , the support of Y , fY (y) = 0, otherwise.

Remark: The quantity (d/dy)g−1(y) is sometimes called the Jacobian of the inverse trans-
formation x = g−1(y).
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Example 2.3. Suppose that X ∼ U(0, 1); i.e., X has pdf

fX(x) =

{
1, 0 < x < 1
0, otherwise.

For β > 0, find the pdf of
Y = g(X) = −β lnX.

Solution. First, note that g(x) = −β lnx is strictly decreasing over X = {x : 0 < x < 1}
because g′(x) = −β/x < 0 ∀x ∈ X . The support of Y is Y = {y : y > 0}. The inverse
transformation x = g−1(y) is found as follows:

y = g(x) = −β lnx =⇒ − y

β
= lnx =⇒ x = g−1(y) = e−y/β.

The Jacobian is
d

dy
g−1(y) =

d

dy
(e−y/β) = − 1

β
e−y/β.

Applying Theorem 2.1.5 directly, we have, for y > 0,

fY (y) = fX(g−1(y))

∣∣∣∣ ddyg−1(y)

∣∣∣∣
= 1× 1

β
e−y/β =

1

β
e−y/β.

Summarizing, the pdf of Y is

fY (y) =


1

β
e−y/β, y > 0

0, otherwise.

This is the pdf of an exponential random variable with parameter β > 0. We have therefore
shown that

X ∼ U(0, 1) =⇒ Y = g(X) = −β lnX ∼ exponential(β).

Example 2.4. Suppose that X is a continuous random variable with pdf

fX(x) =


1

Γ(α)βα
xα−1e−x/β, x > 0

0, otherwise,

where α > 0 and β > 0. The function

Γ(α)
α>0
=

∫ ∞
0

uα−1e−udu

is called the gamma function and will be discussed later. A random variable X with pdf
fX(x) is said to follow a gamma distribution with

α −→ “shape parameter”

β −→ “scale parameter.”
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We write X ∼ gamma(α, β). We now find the distribution

Y = g(X) =
1

X
.

Solution. First, note that g(x) = 1/x is strictly decreasing over X = {x : x > 0} because
g′(x) = −1/x2 < 0 ∀x ∈ X . The support of Y is Y = {y : y > 0}. The inverse transformation
x = g−1(y) is found as follows:

y = g(x) =
1

x
=⇒ x = g−1(y) =

1

y
.

The Jacobian is
d

dy
g−1(y) =

d

dy

(
1

y

)
= − 1

y2
.

Applying Theorem 2.1.5 directly, we have, for y > 0,

fY (y) = fX(g−1(y))

∣∣∣∣ ddyg−1(y)

∣∣∣∣
=

1

Γ(α)βα

(
1

y

)α−1

e−1/βy × 1

y2

=
1

Γ(α)βα
1

yα+1
e−1/βy.

Summarizing, the pdf of Y is

fY (y) =


1

Γ(α)βα
1

yα+1
e−1/βy, y > 0

0, otherwise.

This is called the inverted gamma distribution (not surprisingly). We have shown that

X ∼ gamma(α, β) =⇒ Y = g(X) =
1

X
∼ IG(α, β).

Q: What if g is not one-to-one over X ?
A: We can always use the general result that

FY (y) = PY (Y ≤ y) = PX(g(X) ≤ y)

=

∫
B

fX(x)dx,

where B = {x ∈ X : g(x) ≤ y}. With an expression for the cdf FY (y), we can then just
differentiate it to find the pdf fY (y). We already illustrated this “first principles” approach
in Example 2.2.

Special case: Suppose that X is a continuous random variable with cdf FX(x) and pdf
fX(x). Consider the transformation

Y = g(X) = X2.
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Note that g(x) = x2 is not a one-to-one function over R. However, it is one-to-one over
X = {x : 0 < x < 1}, for example. In general, the cdf of Y = g(X) = X2 is, for y > 0,

FY (y) = PY (Y ≤ y) = PX(X2 ≤ y)

= PX(−√y ≤ X ≤ √y)

= FX(
√
y)− FX(−√y).

Therefore, the pdf of Y = X2 is, for y > 0,

fY (y) =
d

dy
FY (y) =

d

dy
[FX(
√
y)− FX(−√y)]

= fX(
√
y)

1

2
√
y
− fX(−√y)

(
− 1

2
√
y

)
=

1

2
√
y

[fX(
√
y) + fX(−√y)] .

Remark: This is a general formula for the pdf of Y = g(X) = X2. Theorem 2.1.8 (pp 53
CB) generalizes this result.

Example 2.5. Standard normal-χ2 relationship. Suppose the random variable X has pdf

fX(x) =
1√
2π
e−x

2/2I(x ∈ R).

This is the standard normal distribution; we write X ∼ N (0, 1). The support of X is
X = {x : −∞ < x <∞}. Consider the transformation

Y = g(X) = X2.

The support of Y is Y = {y : y ≥ 0}. However, because Y is continuous, PY (Y = 0) = 0.
We can therefore proceed assuming that y > 0. By the last result, we have, for y > 0,

fY (y) =
1

2
√
y

[
1√
2π
e−(
√
y)2/2 +

1√
2π
e−(−√y)2/2

]
=

1

2
√
y

2e−y/2√
2π

=
1√
2π

1
√
y
e−y/2.

Summarizing, the pdf of Y is

fY (y) =


1√
2π

1
√
y
e−y/2, y > 0

0, otherwise.

This is the pdf of a χ2 distribution with ν = 1 degree of freedom. We have shown that

X ∼ N (0, 1) =⇒ Y = g(X) = X2 ∼ χ2
1.

We will use this fact repeatedly in this course.
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Interesting: Recall that we defined the gamma function

Γ(α)
α>0
=

∫ ∞
0

uα−1e−udu.

The gamma function satisfies certain properties (see Chapter 3). We will later show that
Γ(1/2) =

√
π. Rewriting the χ2

1 pdf, we see that, for y > 0,

fY (y) =
1√
2π

1
√
y
e−y/2

=
1

Γ(1
2
)21/2

y
1
2
−1e−y/2,

which we recognize as a gamma(α, β) pdf with parameters α = 1/2 and β = 2. Therefore, the
χ2

1 distribution is a special member of the gamma(α, β) family; it is the gamma distribution
arising when α = 1/2 and β = 2.

Probability Integral Transformation: Suppose that X is a continuous random variable
with cdf FX(x). Define the random variable

Y = FX(X).

The random variable Y ∼ U(0, 1), that is, the pdf and cdf of Y , respectively, are given by

fY (y) = I(0 < y < 1) and FY (y) =


0, y < 0
y, 0 ≤ y ≤ 1
1, y > 1.

Proof. Suppose that FX(x) is strictly increasing. Regardless of the support of X, the random
variable Y = FX(X) has support Y = {y : 0 ≤ y ≤ 1}. The cdf of Y , for 0 ≤ y ≤ 1, is given
by

FY (y) = PY (Y ≤ y) = PX(FX(X) ≤ y) = PX(X ≤ F−1
X (y)) = FX(F−1

X (y)) = y.

In the third equality above, we used the fact that {x : FX(x) ≤ y} = {x : x ≤ F−1
X (y)}. This

is true because FX(x) is strictly increasing (i.e., a unique inverse exists). Therefore,

FY (y) =


0, y < 0
y, 0 ≤ y ≤ 1
1, y > 1,

proving the result. 2

Remark: The Probability Integral Transformation remains true when X is continuous but
has a cdf FX(x) that is not strictly increasing (i.e., it could have flat regions over X ). In
this situation, we just have to redefine what we mean by “inverse” over these flat regions;
see pp 54-55 (CB).

Remark: The novelty of this result is that it holds for any continuous distribution, that
is, a continuous random variable’s cdf, when viewed as random itself, follows a U(0, 1)
distribution, regardless of what the random variable’s distribution actually is. This result
is useful in numerous instances, for example, in the theoretical development of probability
values used in hypothesis testing.
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2.2 Expected Values

Definition: Suppose that X is a random variable. The expected value (or mean) of X
is defined as

E(X) =
∑
x∈X

xfX(x) (discrete case)

E(X) =

∫
R
xfX(x)dx (continuous case)

Note: If E(|X|) = +∞, then we say that “E(X) does not exist.” This occurs when the
sum (integral) above does not converge absolutely. In other words, for E(X) to exist in
the discrete case, we need

∑
x∈X |x|fX(x) to converge. In the continuous case, we need∫

R |x|fX(x)dx <∞.

Example 2.6. A discrete random variable is said to have a Poisson distribution if its
probability mass function (pmf) is given by

fX(x) =

 λxe−λ

x!
, x = 0, 1, 2, ...

0, otherwise,

where λ > 0. The expected value of X is

E(X) =
∞∑
x=0

x
λxe−λ

x!
=
∞∑
x=1

x
λxe−λ

x!
= λe−λ

∞∑
x=1

λx−1

(x− 1)!
= λe−λ

∞∑
y=0

λy

y!︸ ︷︷ ︸
= eλ

= λ,

because
∑∞

y=0 λ
y/y! is the McLaurin series expansion of eλ. Therefore, if X ∼ Poisson(λ),

then E(X) = λ.

Example 2.7. A continuous random variable is said to have a Pareto distribution if its
probability density function (pdf) is given by

fX(x) =
βαβ

xβ+1
I(x > α),

where α > 0 and β > 0. The expected value of X is

E(X) =

∫
R
xfX(x)dx =

∫ ∞
α

x
βαβ

xβ+1
dx

= βαβ
∫ ∞
α

1

xβ
dx

= βαβ
(
− 1

β − 1

1

xβ−1

∣∣∣∣∞
x=α

)
=

βαβ

β − 1

(
1

αβ−1
− lim

x→∞

1

xβ−1

)
=

βα

β − 1
,
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provided that β > 1. Note that if β = 1, then E(X) = α
∫∞
α

(1/x)dx, which is not finite.
Also, if 0 < β < 1, then the limit above becomes

lim
x→∞

1

xβ−1
= lim

x→∞
x1−β = +∞

showing that E(X) does not exist either. Therefore, if X ∼ Pareto(α, β), then

E(X) =
βα

β − 1
, provided that β > 1.

If 0 < β ≤ 1, then E(X) does not exist.

Functions of Random Variables: Suppose X is a random variable (discrete or continu-
ous). The expected value of g(X) is

E[g(X)] =
∑
x∈X

g(x)fX(x) (discrete case)

E[g(X)] =

∫
R
g(x)fX(x)dx (continuous case)

Note: If E[|g(X)|] = +∞, then we say that “E[g(X)] does not exist.” This occurs when
the sum (integral) above does not converge absolutely. In other words, for E[g(X)] to exist
in the discrete case, we need

∑
x∈X |g(x)|fX(x) to converge. In the continuous case, we need∫

R |g(x)|fX(x)dx <∞.

Law of the Unconscious Statistician: Suppose X is a random variable and let Y = g(X),
g : R→ R. In the continuous case, we can calculate E(Y ) = E[g(X)] in two ways:

E[g(X)] =

∫
R
g(x)fX(x)dx

E(Y ) =

∫
R
yfY (y)dy,

where fY (y) is the pdf (pmf) of Y . If X and Y are discrete random variables, the integrals
above are simply sums. The Law of the Unconscious Statistician says that E(Y ) = E[g(X)]
in the sense that if one expectation exists, so does the other and they are equal.

Example 2.8. Suppose that X ∼ U(0, 1), and let Y = g(X) = − lnX. We will show that
E(Y ) = E[g(X)]. With respect to the distribution of X,

E[g(X)] = E(− lnX) =

∫ 1

0

− lnx dx.

Let
u = − lnx du = − 1

x
dx

dv = dx v = x.
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Integration by parts shows that the last integral∫ 1

0

− lnx dx = −x lnx
∣∣∣1
0
−
∫ 1

0

(−1)dx

= (0− 0) + 1 = 1.

To calculate E(Y ), recall from Example 2.3 that Y ∼ exponential(1). Therefore, fY (y) =
e−yI(y > 0) and

E(Y ) =

∫ ∞
0

ye−ydy.

Let
u = y du = dy
dv = e−y v = −e−y

Integration by parts shows that the last integral∫ ∞
0

ye−ydy = −ye−y
∣∣∣∞
0
−
∫ ∞

0

−e−ydy

= (0− 0) + 1 = 1.

Therefore, E(Y ) = E[g(X)], as claimed.

Note: The process of taking expectations is a linear operation. For constants a and b,

E(aX + b) = aE(X) + b.

For example, in Example 2.8,

E(2Y − 3) = 2E(Y )− 3 = 2(1)− 3 = −1.

Theorem 2.2.5. Let X be a random variable and let a, b, and c be constants. For any
functions g1(x) and g2(x) whose expectations exist,

(a) E[ag1(X) + bg2(X) + c] = aE[g1(X)] + bE[g2(X)] + c.

(b) if g1(x) ≥ 0 for all x, then E[g1(X)] ≥ 0.

(c) if g1(x) ≥ g2(x) for all x, then E[g1(X)] ≥ E[g2(X)].

(d) if a ≤ g1(x) ≤ b for all x, then a ≤ E[g1(X)] ≤ b.

Proof. Assume X is continuous with pdf fX(x) and support X . To prove (a), note that

E[ag1(X) + bg2(X) + c] =

∫
R
[ag1(x) + bg2(x) + c]fX(x)dx

= a

∫
R
g1(x)fX(x)dx+ b

∫
R
g2(x)fX(x)dx+ c

∫
R
fX(x)dx

= aE[g1(X)] + bE[g2(X)] + c.
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To prove (b), note that g1(x)fX(x) ≥ 0 for all x ∈ X . Therefore,

E[g1(X)] =

∫
R
g1(x)fX(x)dx ≥ 0.

To prove (c), note that g1(x) ≥ g2(x) =⇒ g1(x) − g2(x) ≥ 0. From part (b), we know
E[g1(X)− g2(X)] = E[g1(X)]− E[g2(X)] ≥ 0. To prove part (d), note that

E[g1(X)] =

∫
R
g1(x)fX(x)dx ≥

∫
R
afX(x)dx = a

∫
R
fX(x)dx = a.

An analogous argument shows that E[g1(X)] ≤ b. 2

Interesting characterization: Suppose that X is a random variable and suppose E(X)
exists. Then

E(X) = arg min
b∈R

E[(X − b)2].

Proof. Let

h(b) = E[(X − b)2] = E(X2 − 2bX + b2) = E(X2)− 2bE(X) + b2.

Note that
d

db
h(b) = −2E(X) + 2b

set
= 0 =⇒ b = E(X).

Because (d2/db2)h(b) = 2 > 0, the solution b = E(X) is a minimizer. 2

Interpretation: Suppose that you would like to predict the value of X and will use the
value b as this prediction. Therefore, the quantity X − b can be thought of as the “error”
in your prediction. Prediction errors can be positive or negative, so we could consider the
quantity (X − b)2 instead because it is always non-negative. Choosing b = E(X) minimizes
the expected squared error of prediction.

Special Expectations: We list below special expectations of the form E[g(X)].

1. g(X) = Xk. The expectation

E[g(X)] = E(Xk) ≡ µ′k

is called the kth moment of X.

2. g(X) = (X − µ)k, where µ = E(X). The expectation

E[g(X)] = E[(X − µ)k] ≡ µk

is called the kth central moment of X.

3. g(X) = etX , where t is a constant. The expectation

E[g(X)] = E(etX) ≡MX(t)

is called the moment generating function of X. Note: The function κX(t) =
lnMX(t) is called the cumulant generating function of X.
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4. g(X) = tX , where t is a constant. The expectation

E[g(X)] = E(tX)

is called the factorial moment generating function of X; see pp 83 (CB).

5. g(X) = eitX , where t is a constant and i =
√
−1. The expectation

E[g(X)] = E(eitX) ≡ ψX(t)

is called the characteristic function of X. In this case, the function g : R→ C.

2.3 Moments and Moment Generating Functions

Definition: Suppose that X is a random variable. The kth (uncentered) moment of X is

µ′k = E(Xk).

The kth central moment of X is

µk = E[(X − µ)k],

where µ = E(X). Usually when talking about moments, k is a positive integer.

• The 1st moment of X is µ′1 = E(X), which is the mean of X.

• The 2nd central moment of X is µ2 = E[(X − µ)2]. We call this the variance of X
and usually denote this by σ2 or var(X). That is,

σ2 = var(X) = E[(X − µ)2].

Remark: Note that the variance of X can be computed as

var(X) = E[(X − µ)2] = E(X2 − 2µX + µ2)

= E(X2)− 2µE(X) + µ2

= E(X2)− µ2

= E(X2)− [E(X)]2.

This is called the variance computing formula.

Remark: Because g(x) = (x− µ)2 ≥ 0 for all x ∈ R, we know that

σ2 = var(X) = E[(X − µ)2] ≥ 0

by Theorem 2.2.5(b). The only time var(X) = 0 is when X = µ with probability one; i.e.,
PX(X = µ) = 1. In this case, the distribution of X is degenerate at µ; in other words, all
of the probability associated with X is located at the single value x = µ.
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Definition: The positive square root of the variance of X is the standard deviation of
X, that is,

σ =
√
σ2 =

√
var(X).

In practice, the standard deviation σ is easier to interpret because its units are the same as
those for X. The variance of X is measured in (units)2.

Example 2.9. Suppose that X ∼ Poisson(λ); i.e., the pmf of X is

fX(x) =

 λxe−λ

x!
, x = 0, 1, 2, ...

0, otherwise,

where λ > 0. In Example 2.6, we showed E(X) = λ. We now calculate var(X). The 2nd
(uncentered) moment of X is

E(X2) =
∞∑
x=0

x2 λ
xe−λ

x!
= λ

∞∑
x=1

x
λx−1e−λ

(x− 1)!

= λ
∞∑
y=0

(y + 1)
λye−λ

y!

= λE(Y + 1),

where the random variable Y ∼ Poisson(λ). Therefore,

E(X2) = λE(Y + 1) = λ[E(Y ) + 1] = λ(λ+ 1)

and the variance of X is

var(X) = E(X2)− [E(X)]2 = λ(λ+ 1)− λ2 = λ.

Summary: If X ∼ Poisson(λ), then E(X) = var(X) = λ.

Example 2.10. Suppose that X ∼ Pareto(α, β); i.e., the pdf of X is

fX(x) =
βαβ

xβ+1
I(x > α),

where α > 0 and β > 0. In Example 2.7, we showed E(X) = βα/(β − 1), provided that
β > 1. We now calculate var(X). The 2nd (uncentered) moment of X is

E(X2) =

∫
R
x2fX(x)dx =

∫ ∞
α

x2 βαβ

xβ+1
dx

= βαβ
∫ ∞
α

1

xβ−1
dx

= βαβ
(
− 1

β − 2

1

xβ−2

∣∣∣∣∞
x=α

)
=

βαβ

β − 2

(
1

αβ−2
− lim

x→∞

1

xβ−2

)
=

βα2

β − 2
,
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provided that β > 2. If 0 < β ≤ 2, then E(X2) does not exist. Therefore, the variance of X
is

var(X) = E(X2)− [E(X)]2 =
βα2

β − 2
−
(

βα

β − 1

)2

=
βα2

(β − 1)2(β − 2)
.

Note that this formula only applies if β > 2. If 0 < β ≤ 2, then var(X) does not exist.

Theorem 2.3.4. If X is a random variable with finite variance, i.e., var(X) <∞, then for
constants a and b,

var(aX + b) = a2var(X).

Proving this is easy; apply the variance computing formula to var(Y ), where Y = aX + b.

Remarks: Note that this formula is different than the analogous result for expected values;
i.e.,

E(aX + b) = aE(X) + b.

The result for variances says that additive (location) shifts through b do not affect the
variance. Also, if a = 0, then var(b) = 0. In other words, the variance of a constant is zero.

Definition: Suppose that X is a random variable with cdf FX(x). The moment generat-
ing function (mgf) of X is

MX(t) = E(etX),

provided this expectation is finite for all t in an open neighborhood about t = 0; i.e.,
∃h > 0 3 E(etX) < ∞ ∀t ∈ (−h, h). If no such h > 0 exists, then the moment generating
function of X does not exist. A general expression for MX(t) is

MX(t) = E(etX) =

∫
R
etxdFX(x),

written as a Riemann-Stiljes integral, which is understood to mean

MX(t) =
∑
x∈X

etxfX(x) (discrete case)

MX(t) =

∫
R
etxfX(x)dx (continuous case)

Example 2.11. Suppose that X ∼ Poisson(λ); i.e., the pmf of X is

fX(x) =

 λxe−λ

x!
, x = 0, 1, 2, ...

0, otherwise,

where λ > 0.
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The mgf of X is

MX(t) = E(etX) =
∞∑
x=0

etx
λxe−λ

x!

= e−λ
∞∑
x=0

(λet)x

x!
= e−λeλe

t

= eλ(et−1).

Note we have used the fact that
∞∑
x=0

(λet)x

x!
= eλe

t

;

i.e., the LHS is the McLaurin series expansion of h(t) = eλe
t
. This expansion is valid for all

t ∈ R. Hence, the mgf of X exists.

Example 2.12. Suppose that X ∼ b(n, p); i.e., the pmf of X is

fX(x) =


(
n

x

)
px(1− p)n−x, x = 0, 1, 2, ..., n

0, otherwise,

where 0 < p < 1. The mgf of X is

MX(t) = E(etX) =
n∑
x=0

etx
(
n

x

)
px(1− p)n−x

=
n∑
x=0

(
n

x

)
(pet)x(1− p)n−x = (q + pet)n,

where q = 1− p. Note that we have used the binomial expansion formula above; i.e.,

(a+ b)n =
n∑
x=0

(
n

x

)
axbn−x,

with a = pet and b = q = 1 − p. This expansion holds for any a and b. Therefore, the
expansion is valid for all t ∈ R. Hence, the mgf of X exists.

Example 2.13. Suppose that X ∼ exponential(β); i.e., the pdf of X is

fX(x) =
1

β
e−x/βI(x > 0),

where β > 0. The mgf of X is

MX(t) = E(etX) =

∫ ∞
0

etx
1

β
e−x/βdx =

1

β

∫ ∞
0

e−x(
1
β
−t)dx

=
1

β

[
− 1

1
β
− t

e−x(
1
β
−t)
∣∣∣∣∞
x=0

]

=
1

1− βt

[
e−x(

1
β
−t)
∣∣∣∣0
∞

]
=

1

1− βt

[
1− lim

x→∞
e−x(

1
β
−t)
]
.
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Note that

lim
x→∞

e−x(
1
β
−t) = 0 if

1

β
− t > 0

lim
x→∞

e−x(
1
β
−t) = +∞ if

1

β
− t < 0.

Therefore, provided that
1

β
− t > 0 ⇐⇒ t <

1

β
,

the mgf of X exists and is given by

MX(t) =
1

1− βt
.

Note that ∃h > 0 (e.g., h = 1/β) such that MX(t) = E(etX) <∞ ∀t ∈ (−h, h).

Generalization: If X ∼ gamma(α, β), then

MX(t) =

(
1

1− βt

)α
, t <

1

β
.

When α = 1, the gamma(α, β) distribution reduces to the exponential(β) distribution. The
gamma mgf is derived on pp 63-64 (CB).

Why are mgfs useful?
Reason 1: Moment generating functions are functions that generate moments.

Theorem 2.3.7. If X is a random variable with mgf MX(t), then

E(Xk) = M
(k)
X (0),

where

M
(k)
X (0) =

dk

dtk
MX(t)

∣∣∣∣
t=0

.

This result shows that moments of X can be found by differentiation.

Proof. Set k = 1. The mgf of X can be written generally as

MX(t) = E(etX) =

∫
R
etxdFX(x).

Taking the first derivative, we have

d

dt
MX(t) =

d

dt

∫
R
etxdFX(x)

?
=

∫
R

d

dt
etxdFX(x)

=

∫
R
xetxdFX(x) = E(XetX).
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Therefore,
d

dt
MX(t)

∣∣∣∣
t=0

= E(Xe0X) = E(X).

Showing this for k = 2, 3, ..., is done similarly. 2

Remark: In the argument above, we needed to assume that the interchange of the derivative
and integral (sum) is justified. When the mgf exists, this interchange is justified. See also
§2.4 (CB) for a more general discussion on this topic.

Interesting: Writing MX(t) in its McLaurin series expansion (i.e., a Taylor series expansion
about t = 0), we see that

MX(t) = MX(0) +
M

(1)
X (0)

1!
(t− 0) +

M
(2)
X (0)

2!
(t− 0)2 +

M
(3)
X (0)

3!
(t− 0)3 + · · ·

= 1 + E(X)t+
E(X2)

2
t2 +

E(X3)

6
t3 +

E(X4)

24
t4 + · · ·

=
∞∑
k=0

E(Xk)

k!
tk.

You can also convince yourself that Theorem 2.3.7 is true, that is,

E(Xk) =
dk

dtk
MX(t)

∣∣∣∣
t=0

,

by differentiating the RHS of MX(t) written in its expansion (and evaluating derivatives at
t = 0). This argument would not relieve you from having to justify an interchange of the
derivative; the interchange now would involve an infinite sum. As in our proof of Theorem
2.3.7, this interchange is justified provided that the mgf exists.

Example 2.14. Suppose that X ∼ b(n, p); i.e., the pmf of X is

fX(x) =


(
n

x

)
px(1− p)n−x, x = 0, 1, 2, ..., n

0, otherwise,

where 0 < p < 1. In Example 2.12, we derived the mgf of X to be

MX(t) = (q + pet)n,

where q = 1− p. Differentiating MX(t), we have

d

dt
MX(t) =

d

dt
(q + pet)n = n(q + pet)n−1pet.

Therefore,

E(X) =
d

dt
MX(t)

∣∣∣∣
t=0

= n(q + pe0)n−1pe0 = np.

Exercise: Show var(X) = np(1− p).
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Discussion: In general, a random variable’s first four moments describe important physical
characteristics of its distribution.

1. E(X) = µ describes the “center” of the distribution of X.

2. σ2 = var(X) = E(X2)− [E(X)]2 describes the “spread” or “variability” in the distri-
bution of X.

3. The skewness of X is defined as

ξ =
E[(X − µ)3]

(σ2)3/2

and describes the “skewness” in the distribution of X (i.e., the departure from sym-
metry).

• ξ = 0 =⇒ fX(x) is symmetric about µ

• ξ > 0 =⇒ fX(x) is skewed right

• ξ < 0 =⇒ fX(x) is skewed left.

4. The kurtosis of X is defined as

κ =
E[(X − µ)4]

(σ2)2

and describes the “peakedness” of a distribution relative to the amount of variability
in the tails of the distribution of X.

• κ = 3 =⇒ mesokurtic; normal distribution (as a reference)

• κ > 3 =⇒ leptokurtic; fX(x) has a more acute peak around µ and fatter tails

• κ < 3 =⇒ platykurtic; fX(x) has a broader peak around µ and thinner tails.

Remarks:

• Obviously, we need the appropriate moments to exist for these quantities to be relevant;
for example, we need E(X3) to exist to talk about a random variable’s skewness.

• If a random variable’s mgf exists, then it characterizes an infinite set of moments.
However, not all random variables have mgfs.

• Higher order moments existing implies the existence of lower order moments, as the
follow result shows.

Result: Suppose X is a random variable. If E(Xm) exists, so does E(Xk) for all k ≤ m.
Proof. The kth moment of X is

E(Xk) =

∫
R
xkdFX(x).
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To prove that E(Xk) exists, it suffices to show that

E(|X|k) =

∫
R
|x|kdFX(x) <∞.

Toward this end, note that we can write∫
R
|x|kdFX(x) =

∫
|x|≤1

|x|kdFX(x) +

∫
|x|>1

|x|kdFX(x)

≤
∫
|x|≤1

dFX(x) +

∫
|x|>1

|x|mdFX(x)

≤
∫
R
dFX(x) +

∫
R
|x|mdFX(x)

= 1 + E(|X|m).

The first inequality results because |x|k ≤ 1 whenever |x| ≤ 1 and |x|k ≤ |x|m whenever
|x| > 1. The second inequality results because, in both integrals, we are integrating positive
functions over a larger region. We have shown that E(|X|k) ≤ 1 + E(|X|m). However,
E(Xm) exists by assumption so E(|X|m) <∞. Thus, we are done. 2

Why are mgfs useful?
Reason 2: Moment generating functions uniquely determine a random variable’s distribu-
tion.

Theorem 2.3.11. Suppose X and Y are random variables, defined on the same probability
space (S,B, P ), with moment generating functions MX(t) and MY (t), respectively, which
exist. Then

FX(x) = FY (x) ∀x ∈ R ⇐⇒ MX(t) = MY (t) ∀t ∈ (−h, h), ∃h > 0.

Remarks: The practical implication of Theorem 2.3.11 is that the mgf of a random variable
completely determines its distribution. Proving the necessity (=⇒) of Theorem 2.3.11 is easy.
Proving the sufficiency (⇐=) is not. Note that if X is continuous,

MX(t) =

∫
R
etxdFX(x)

=

∫
R
etxfX(x)dx,

is a LaPlace transform of fX(x). The sufficiency part stems from the uniqueness of LaPlace
transforms.

Recall: In Section 2.1, recall that we posed the general question:

“If I know the distribution of X, can I find the distribution of Y = g(X)?”
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In the light of Theorem 2.3.11, we now have another approach on how to answer this question.
Specifically, we can derive the mgf of Y = g(X). Because mgfs are unique, the distribution
identified by this mgf must be the answer.

Example 2.15. Suppose that X ∼ gamma(α, β). Find the distribution of

Y = g(X) = cX,

where c > 0. Recall that the mgf of X is

MX(t) =

(
1

1− βt

)α
, t <

1

β
.

The mgf of Y is

MY (t) = E(etY ) = E(etcX)

= MX(ct)

=

(
1

1− βct

)α
,

which exists for ct < 1/β ⇐⇒ t < 1/βc. We recognize MY (t) as the mgf of a gamma
distribution with shape parameter α and scale parameter βc. Because mgfs are unique (i.e.,
they uniquely identify a distribution), it must be true that Y = cX ∼ gamma(α, βc).

Remark: When finding the distribution of a function of a random variable Y = g(X), we
have three ways to approach this problem:

1. CDF technique: derive FY (y) directly; I call this the “first principles” approach

2. Transformation: requires g to be one-to-one (Theorem 2.1.5)

3. MGF technique: derive MY (t) and identify the corresponding distribution.

Theorem 2.3.15. Suppose X is a random variable with mgf MX(t). For any constants a
and b, the mgf of Y = g(X) = aX + b is given by

MY (t) = ebtMX(at).

Proof. The mgf of Y is

MY (t) = E(etY ) = E
[
et(aX+b)

]
= E(ebteatX)

= ebtE(eatX) = ebtMX(at). 2

Example 2.16. Suppose that X has pdf

fX(x) =
1√
2πσ

e−(x−µ)2/2σ2

I(x ∈ R),
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where −∞ < µ <∞ and σ2 > 0. A random variable with this pdf is said to have a normal
distribution with mean µ and variance σ2, written X ∼ N (µ, σ2). In Chapter 3, we will
show that the mgf of X is

MX(t) = eµt+σ
2t2/2.

Here, we derive the distribution of Y = g(X) = aX + b, where a and b are constants. To do
this, simply note that

MY (t) = ebtMX(at) = ebteµ(at)+σ2(at)2/2

= e(aµ+b)t+a2σ2t2/2,

which we recognize as the mgf of a normal distribution with mean aµ+ b and variance a2σ2.
We have therefore shown that

X ∼ N (µ, σ2) =⇒ Y = g(X) = aX + b ∼ N (aµ+ b, a2σ2).

This result, which is important in its own right, is actually just a special case of a more general
result stating that linear combinations of normal random variables are also normally
distributed, a fact that we will prove more generally in Chapter 4.

Interesting relationships: The following diagram describes the relevant relationships be-
tween mgfs and their associated distributions and moments:

MGF exists −−−−−−−−−→ distribution is
determinedy

x
moments are −−−−−−−−−→ ???
determined

Q: Does an infinite set of moments uniquely determine a distribution?
A: Yes, if X is bounded. No, otherwise. That is, it is possible for two different distributions
to have the same (infinite) set of moments, as the following example shows.

Example 2.17. Suppose that X and Y have pdfs

fX(x) =
1√
2πx

e−(lnx)2/2I(x > 0)

fY (y) = fX(y)[1 + sin(2π ln y)].

A random variable X ∼ fX(x) is said to have a lognormal distribution (actually this is
just one member of the lognormal family of distributions). For these two distributions, it is
possible to show that

E(Xr) = E(Y r) = er
2/2, for r = 1, 2, 3, ..., .
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However, these two distributions are very different distributions; see Figure 2.3.2 (pp 65
CB). This example illustrates that even if two random variables have the same (infinite) set
of moments, they do not necessarily have the same distribution.

Interesting: Another interesting fact about the lognormal distribution in Example 2.17 is
that X has all of its moments, given by E(Xr) = er

2/2, for r = 1, 2, 3, ...,. However, the mgf
of X does not exist, because

E(etX) =

∫ ∞
0

etx
1√
2πx

e−(lnx)2/2dx

is not finite. See Exercise 2.36 (pp 81 CB).

Why are mgfs useful?
Reason 3: Moment generating functions can help to establish convergence results.

Theorem 2.3.12. Suppose {Xn} is a sequence of random variables, where Xn has mgf
MXn(t). Suppose that

MXn(t)→MX(t),

as n → ∞ for all t ∈ (−h, h) ∃h > 0; i.e., the sequence of functions MXn(t) converges
pointwise for all t in an open neighborhood about t = 0. Then

1. There exists a unique cdf FX(x) whose moments are determined by MX(t).

2. The sequence of cdfs
FXn(x)→ FX(x),

as n→∞, for all x ∈ CFX , the set of points x ∈ R where FX(·) is continuous.

In other words, convergence of mgfs implies convergence of cdfs. We write Xn
d−→ X, as

n→∞, and say that “Xn converges in distribution to X.”

Aside: When discussing convergence results in mathematical statistics, we will often be
asked to evaluate a limit of the form

lim
n→∞

[
1 +

b

n
+
g(n)

n

]cn
,

where b and c are constants (free of n) and limn→∞ g(n) = 0. A L’Hôpital’s rule argument
shows that

lim
n→∞

[
1 +

b

n
+
g(n)

n

]cn
= ebc.

A special case of this result arises when g(n) = 0 and c = 1; i.e.,

lim
n→∞

(
1 +

b

n

)n
= eb.

PAGE 58



STAT 712: CHAPTER 2 JOSHUA M. TEBBS

Example 2.18. Suppose that Xn ∼ b(n, pn), where npn = λ for all n. For this sequence of
random variables, we have

MXn(t) = E(etXn) = (qn + pne
t)n

=

[
1 +

λ(et − 1)

n

]n
,

where qn = 1− pn. Therefore, with b = λ(et − 1), c = 1, and g(n) = 0, we have

lim
n→∞

MXn(t) = eλ(et−1),

which we recognize as the mgf of a Poisson distribution with mean λ. Therefore, the limiting
distribution of Xn ∼ b(n, pn), where npn = λ for all n ∈ N, is Poisson(λ). We write

Xn
d−→ X, as n→∞, where X ∼ Poisson(λ).

Example 2.19. Suppose that Yn ∼ gamma(n, β), where β is free of n, so that

MYn(t) =

(
1

1− βt

)n
, t <

1

β
.

Find the limiting distribution of

Xn =
Yn
n
.

Solution. The mgf of Xn is

MXn(t) = E(etXn) = E
[
et(

Yn
n )
]

= MYn(t/n)

=

[
1

1− β(t/n)

]n
=

(
1− βt

n

)−n
,

provided that t/n < 1/β ⇐⇒ t < n/β. Taking b = −βt, c = −1, and g(n) = 0 in the general
limit result stated earlier, we see that

lim
n→∞

MXn(t) = eβt.

The limiting mgf MX(t) = eβt is the mgf of a degenerate random variable X with all of its
probability mass at a single point, namely, x = β. That is, the cdf of X is

FX(x) =

{
0, x < β
1, x ≥ β.

We have therefore shown that Xn
d−→ X, as n→∞, where X has a degenerate distribution

at β. In Chapter 5, we will refer to this type of convergence as “convergence in probability”
and will write Xn

p−→ β, as n→∞.
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3 Common Families of Distributions

Complementary reading: Chapter 3 (CB). Sections 3.1-3.6.

3.1 Introduction

Definition: A parametric model (or parametric family) is a set of distributions indexed
by a finite-dimensional parameter θ = (θ1, θ2, ..., θd)

′, where d ≥ 1. Unless otherwise stated,
the parameter θ is regarded as fixed (i.e., it is not random).

Example 3.1. Suppose X ∼ exponential(β). Because β > 0, we see that a collection of
distributions emerges; i.e.,{

fX(x|β) =
1

β
e−x/βI(x > 0); β > 0

}
.

Here, the parameter θ = β, a scalar (d = 1). One member of this collection (i.e., family)
arises when β = 2, for example,

fX(x|2) =
1

2
e−x/2I(x > 0).

The pdf

fX(x|3) =
1

3
e−x/3I(x > 0)

corresponds to another member of this family.

Example 3.2. Suppose that X ∼ N (µ, σ2); i.e., the pdf of X is

fX(x|µ, σ2) =
1√
2πσ

e−(x−µ)2/2σ2

I(x ∈ R),

where −∞ < µ < ∞ and σ2 > 0. Here, the parameter θ = (µ, σ2)′ is two-dimensional
(d = 2). One very important member of the N (µ, σ2) family arises when µ = 0 and σ2 = 1.
This member is called the standard normal distribution and is denoted by N (0, 1).

Remark: A common format for a first-year sequence in probability and mathematical statis-
tics (like STAT 712-713) is to accept a given parametric family of distributions as being ap-
propriate and then proceed to develop what is exclusively model-dependent, parametric
statistical inference (in contrast to nonparametric statistical inference). We therefore en-
deavor to investigate various “named” families of distributions that will be relevant for future
use (we have seen many already). We will examine families of distributions that correspond
to both discrete and continuous random variables.
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3.2 Discrete Distributions

Recall: A random variable X is discrete if its cdf FX(x) is a step function. An equivalent
characterization is that the support of X, denoted by X , is at most countable.

1. Discrete Uniform. A random variable is said to have a discrete uniform distribution if
its pmf is given by

fX(x|N) =

{ 1

N
, x = 1, 2, ..., N

0, otherwise,

where N ∈ N. Note that this distribution puts the same weight 1/N on each outcome
x ∈ X = {x : x = 1, 2, ..., N}. Notation: X ∼ DU(1, N).

Mean/Variance: The relevant moments of X ∼ DU(1, N) are

E(X) =
N + 1

2

var(X) =
(N + 1)(N − 1)

12
.

MGF: The mgf of X ∼ DU(1, N) is

MX(t) = E(etX) =
N∑
x=1

etx
1

N

=
1

N
et +

1

N
e2t + · · ·+ 1

N
eNt.

Generalization: The discrete uniform distribution can be generalized easily. The pmf of
X ∼ DU(N0, N1) is

fX(x|N0, N1) =

{
1

N1−N0+1
, x = N0, N0 + 1, ..., N1

0, otherwise,

where N0 and N1 are integers satisfying N0 < N1.

2. Hypergeometric. A random variable X is said to have a hypergeometric distribution
if its pmf is given by

fX(x|N,M,K) =


(
M
x

)(
N−M
K−x

)(
N
K

) , x = 0, 1, 2, ..., K

0, otherwise,

where N,M,K ∈ N, M < N , K < N . The support X = {x : x = 0, 1, 2, ..., K} is appropri-
ate when K is “small” when compared to both N and M . Notation: X ∼ hyper(N,K,M).
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Remark: To understand this distribution, it is easiest to conceptualize a finite population
of N objects, where the objects are classified as either of “Type I” or “Type II.”

N = population size

K = sample size

M = number of Type I objects in the population.

We sample K objects from the population at random and without replacement (SRSWOR).
The random variable X records

X = number of Type I objects in the sample (i.e., out of K).

Mean/Variance: The relevant moments of X ∼ hyper(N,K,M) are

E(X) =
KM

N

var(X) =
KM

N

(
1− M

N

)(
N −K
N − 1

)
.

The term (N−K
N−1

) is called the “finite population correction factor” and arises in sampling
contexts. The mgf of X ∼ hyper(N,K,M) exists but not in a convenient form.

Curiosity: If the population size N →∞ so that M
N
→ p ∈ (0, 1), note that for fixed K,

E(X)→ Kp and var(X)→ Kp(1− p),

which are the corresponding moments of the b(n, p) distribution. Not only do the mo-
ments converge, but the hyper(N,K,M) pmf also converges to the b(n, p) pmf under the
same conditions; see Exercise 3.11 (pp 129 CB). When N is “large” (i.e., large relative to
K), probability calculations in a finite population (or when sampling without replacement)
should be “close” to those in a population viewed as infinite in size (or when sampling is
done with replacement).

Terminology: A Bernoulli trial is an experiment with two possible outcomes, where

• the outcomes can be thought of as “success” or “failure”

• p = pr(“success”) is the same for each trial.

3. Binomial. A random variable X is said to have a binomial distribution if its pmf is
given by

fX(x|n, p) =


(
n

x

)
px(1− p)n−x, x = 0, 1, 2, ..., n

0, otherwise,

where n ∈ N and 0 < p < 1. The random variable X counts the number of “successes” in n
independent Bernoulli trials. Notation: X ∼ b(n, p).
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Mean/Variance: The relevant moments of X ∼ b(n, p) are

E(X) = np

var(X) = np(1− p).

MGF: The mgf of X ∼ b(n, p) is

MX(t) = (q + pet)n, where q = 1− p.

Remark: When n = 1, the b(n, p) distribution reduces to the Bernoulli distribution with
pmf

fX(x|p) =

{
px(1− p)1−x, x = 0, 1

0, otherwise.

We write X ∼ Bernoulli(p).

4. Geometric. A random variable X is said to have a geometric distribution if its pmf is
given by

fX(x|p) =

{
(1− p)x−1p, x = 1, 2, 3, ...,

0, otherwise,

where 0 < p < 1. Conceptualization: Suppose independent Bernoulli trials are performed.
The random variable X counts the number of trials needed to observe the 1st success. The
support of X is X = {x : x = 1, 2, 3, ..., } = N. Notation: X ∼ geom(p).

Mean/Variance: The relevant moments of X ∼ geom(p) are

E(X) =
1

p

var(X) =
q

p2
,

where q = 1− p.

MGF: The mgf of X ∼ geom(p) is

MX(t) = E(etX) =
∞∑
x=1

etx(1− p)x−1p =
p

q

∞∑
x=1

(qet)x

=
p

q

[
∞∑
x=0

(qet)x − 1

]

=
p

q

(
1

1− qet
− 1

)
=

pet

1− qet
,

for qet < 1 ⇐⇒ t < − ln q.
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Memoryless Property: For integers s > t,

PX(X > s|X > t) = PX(X > s− t).

The geometric distribution is the only discrete distribution that has this property.

5. Negative Binomial. A random variable X is said to have a negative binomial distri-
bution if its pmf is given by

fX(x|r, p) =


(
x− 1

r − 1

)
pr(1− p)x−r, x = r, r + 1, r + 2, ...,

0, otherwise,

where 0 < p < 1. Conceptualization: Suppose independent Bernoulli trials are performed.
The random variable X counts the number of trials needed to observe the rth success, where
r ≥ 1. The support of X is X = {x : x = r, r + 1, r + 2, ..., }. Notation: X ∼ nib(r, p).
When r = 1, the nib(r, p) distribution reduces to the geom(p) distribution. The value r is
called the waiting parameter.

Mean/Variance: The relevant moments of X ∼ nib(r, p) are

E(X) =
r

p

var(X) =
rq

p2
, where q = 1− p.

MGF: The mgf of X ∼ nib(r, p) is

MX(t) = E(etX) =
∞∑
x=r

etx
(
x− 1

r − 1

)
pr(1− p)x−r

= (pet)r
∞∑
x=r

(
x− 1

r − 1

)
(qet)x−r︸ ︷︷ ︸

= (1−qet)−r

=

(
pet

1− qet

)r
,

for qet < 1 ⇐⇒ t < − ln q. That
∑∞

x=r

(
x−1
r−1

)
(qet)x−r = (1 − qet)−r follows from the lemma

below.

Lemma. Suppose that r is a nonnegative integer. Then
∞∑
x=r

(
x− 1

r − 1

)
(qet)x−r = (1− qet)−r.

Proof. Consider the function f(w) = (1− w)−r, where r is a nonnegative integer. It is easy
to show that

f ′(w) = r(1− w)−(r+1)

f ′′(w) = r(r + 1)(1− w)−(r+2)

...
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In general, f (z)(w) = r(r + 1) · · · (r + z − 1)(1 − w)−(r+z), where f (z)(w) denotes the zth
derivative of f with respect to w. Note that

f (z)(w)
∣∣∣
w=0

= r(r + 1) · · · (r + z − 1).

Now, consider writing the McLaurin Series expansion of f(w); i.e., a Taylor Series expansion
of f(w) about w = 0; this expansion is given by

f(w) =
∞∑
z=0

f (z)(0)

z!
wz =

∞∑
z=0

r(r + 1) · · · (r + z − 1)

z!
wz =

∞∑
z=0

(
r + z − 1

r − 1

)
wz.

Letting w = qet and z = x− r proves the lemma. 2

Alternative definition: Suppose independent Bernoulli trials are performed. We have
defined X ∼ nib(r, p) to record

X = number of trials needed to observe the rth success.

Define the random variable Y = X − r. Note that

Y = number of failures observed before the rth success.

We can derive fY (y) = fY (y|r, p) by performing a transformation for discrete random vari-
ables. First note that Y = {y : y = 0, 1, 2, ..., }. Therefore, the pmf of Y = g(X) = X − r,
for y = 0, 1, 2, ..., is given by

fY (y) = PY (Y = y) = PX(X − r = y) = PX(X = y + r)

=

(
y + r − 1

y

)
pr(1− p)y.

We can get the mean and variance of Y = X − r easily:

E(Y ) = E(X − r) = E(X)− r =
r

p
− r =

rq

p

and
var(Y ) = var(X − r) = var(X) =

rq

p2
.

6. Poisson. A random variable X is said to have a Poisson distribution if its pmf is given
by

fX(x|λ) =

 λxe−λ

x!
, x = 0, 1, 2, ...

0, otherwise,

where λ > 0. The support of X is X = {x : x = 0, 1, 2, ..., }. Notation: X ∼ Poisson(λ).

Mean/Variance: The relevant moments of X ∼ Poisson(λ) are

E(X) = λ

var(X) = λ.
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MGF: The mgf of X ∼ Poisson(λ) is

MX(t) = eλ(et−1).

Conceptualization: A Poisson random variable X can be interpreted as counting the
number of “occurrences” in a unit interval of time (or space), where the occurrences arise
according to a Poisson process; see pp 135-136 (CB).

Recall: In Chapter 2, we showed that if Xn ∼ b(n, pn), where npn = λ for all n, then

Xn
d−→ X, as n→∞, where X ∼ Poisson(λ). Therefore, if Xn ∼ b(n, p) and n is large,

PXn(Xn = x) =

(
n

x

)
px(1− p)n−x ≈ λxe−λ

x!
,

where λ = np. The approximation is best when n is large (not surprising) and p is small.
See pp 94 (CB) for a numerical example.

New Result: Suppose {Yr} is a sequence of random variables, where

fYr(y) =

(
y + r − 1

y

)
pr(1− p)y,

for y = 0, 1, 2, ...,. That is, Yr follows a negative binomial distribution, but where Yr records
the number of failures before the rth success (i.e., under our alternative definition). This
negative binomial distribution is linked to the Poisson distribution in the following way: If

r →∞ and p→ 1 such that r(1− p)→ λ > 0, then Yr
d−→ Y , where Y ∼ Poisson(λ). This

result can be established by first deriving MYr(t), the mgf of Yr, and then showing

MYr(t)→ eλ(et−1),

the mgf of Y . See Exercise 3.15 (pp 130 CB).

3.3 Continuous Distributions

Recall: A random variable X is continuous if its cdf FX(x) is a continuous function.

1. Uniform. A random variable X is said to have a uniform distribution if its pdf is given
by

fX(x|a, b) =

{ 1

b− a
, a < x < b

0, otherwise,

where −∞ < a < b <∞. Notation: X ∼ U(a, b).

Mean/Variance: The relevant moments of X ∼ U(a, b) are

E(X) =
a+ b

2

var(X) =
(b− a)2

12
.
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MGF: The mgf of X ∼ U(a, b) is

MX(t) =


ebt − eat

(b− a)t
, t 6= 0

1, t = 0.

CDF: The cdf of X ∼ U(a, b) is

FX(x) =


0, x ≤ a

x− a
b− a

, a < x < b

1, x ≥ b.

Remark: A special member of the U(a, b) family arises when a = 0 and b = 1. It is called
the “standard” uniform distribution; X ∼ U(0, 1).

2. Gamma. A random variable X is said to have a gamma distribution if its pdf is given
by

fX(x|α, β) =
1

Γ(α)βα
xα−1e−x/βI(x > 0),

where α > 0 and β > 0. Notation: X ∼ gamma(α, β). Recall that

α −→ “shape parameter”

β −→ “scale parameter.”

The cdf of X can not be written in closed form; i.e., it can be expressed as an integral of
fX(x|α, β), but it can not be simplified.

Gamma function: For α > 0, define the function

Γ(α) =

∫ ∞
0

uα−1e−udu.

The gamma function satisfies certain properties:

1. Γ(1) = 1

2. Γ(α + 1) = αΓ(α)

3. Γ(1/2) =
√
π.

Note that if α ∈ N = {1, 2, 3, ..., }, then second (recursive) property implies

Γ(α) = (α− 1)!
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Mean/Variance: The relevant moments of X ∼ gamma(α, β) are

E(X) = αβ

var(X) = αβ2.

MGF: The mgf of X ∼ gamma(α, β) is

MX(t) =

(
1

1− βt

)α
, t <

1

β
.

Connection with Poisson distribution: Suppose that we observe events according to a
Poisson process (with intensity parameter λ > 0). Define

W = time until the αth event.

Then W ∼ gamma(α, β), where β = 1/λ.
Proof. Clearly, W is a non-negative random variable that is continuous. The cdf of W , for
w > 0, is given by

FW (w) = PW (W ≤ w) = 1− PW (W > w)

= 1− pr({fewer than α events in [0, w]})

= 1−
α−1∑
j=0

(λw)je−λw

j!
.

Result: If X ∼ Poisson(λ), then X counts the number of events over a unit interval of time.
Over an interval of length w > 0, the number of events is Poisson with mean λw.

The pdf of W , for w > 0, is given by

fW (w) =
d

dw
FW (w) = λe−λw − e−λw

α−1∑
j=1

[
j(λw)j−1λ

j!
− (λw)jλ

j!

]
︸ ︷︷ ︸

telescoping sum

= λe−λw − e−λw
[
λ− λ(λw)α−1

(α− 1)!

]
=

λα

Γ(α)
wα−1e−λw,

which is the pdf of W ∼ gamma(α, β), where β = 1/λ. 2

Integration Trick: Because the gamma(α, β) pdf integrates to one, we have∫ ∞
0

1

Γ(α)βα
xα−1e−x/βdx = 1 =⇒

∫ ∞
0

xα−1e−x/βdx = Γ(α)βα.

This result is extremely useful and will be used repeatedly.
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3. Exponential. A random variable X is said to have an exponential distribution if its pdf
is given by

fX(x|β) =
1

β
e−x/βI(x > 0),

where β > 0. Notation: X ∼ exponential(β). The exponential(β) distribution is a special
case of the gamma(α, β) distribution when α = 1.

Mean/Variance: The relevant moments of X ∼ exponential(β) are

E(X) = β

var(X) = β2.

MGF: The mgf of X ∼ exponential(β) is

MX(t) =
1

1− βt
, t <

1

β
.

CDF: The cdf of X ∼ exponential(β) is

FX(x) =

{
0, x ≤ 0

1− e−x/β, x > 0.

Memoryless Property: For s > t ≥ 0,

PX(X > s|X > t) = PX(X > s− t).

The exponential distribution is the only continuous distribution that has this property.

Recall: From our previous result relating the gamma and Poisson distributions, we see that
the exponential distribution with mean β = 1/λ describes the time to the first event in a
Poisson process with intensity parameter λ > 0.

4. Chi-squared. A random variable X is said to have a chi-squared distribution with p
degrees of freedom if its pdf is given by

fX(x|p) =
1

Γ(p
2
)2p/2

x
p
2
−1e−x/2I(x > 0),

where p > 0. Notation: X ∼ χ2
p. The χ2

p distribution is a special case of the gamma(α, β)
distribution when α = p/2 and β = 2. Usually, p will be an integer. The χ2 distribution
arises often in applied statistics.

Mean/Variance: The relevant moments of X ∼ χ2
p are

E(X) = p

var(X) = 2p.
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MGF: The mgf of X ∼ χ2
p is

MX(t) =

(
1

1− 2t

)p/2
, t <

1

2
.

5. Weibull. A random variable X is said to have a Weibull distribution if its pdf is given
by

fX(x|γ, β) =
γ

β
xγ−1e−x

γ/βI(x > 0),

where γ > 0 and β > 0. Notation: X ∼ Weibull(γ, β). The Weibull distribution is used
extensively in engineering applications. When γ = 1, the Weibull(γ, β) distribution reduces
to the exponential(β) distribution.

Mean/Variance: The relevant moments of X ∼Weibull(γ, β) are

E(X) = β1/γΓ(1 + 1/γ)

var(X) = β2/γ
[
Γ(1 + 2/γ)− Γ2(1 + 1/γ)

]
.

The mgf of X exists only when γ ≥ 1. Its form is not very useful.

6. Normal. A random variable X is said to have a normal (or Gaussian) distribution if its
pdf is given by

fX(x|µ, σ2) =
1√
2πσ

e−(x−µ)2/2σ2

I(x ∈ R),

where −∞ < µ <∞ and σ2 > 0. Notation: X ∼ N (µ, σ2).

Mean/Variance: The relevant moments of X ∼ N (µ, σ2) are

E(X) = µ

var(X) = σ2.

MGF: The mgf of X ∼ N (µ, σ2) is

MX(t) = eµt+σ
2t2/2.

Result: If X ∼ N (µ, σ2), then

Z =
X − µ
σ

∼ N (0, 1).

Proof. We can derive the pdf of Z using a transformation; note that g(x) = (x − µ)/σ is
one-to-one over R, the support of X. The support of Z is also R = {z : −∞ < z < ∞}.
The inverse transformation x = g−1(z) is found as follows:

z = g(x) =
x− µ
σ

=⇒ x = g−1(z) = σz + µ.
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The Jacobian is
d

dz
g−1(z) =

d

dz
(σz + µ) = σ.

Applying Theorem 2.1.5 directly, we have, for z ∈ R,

fZ(z) = fX(g−1(z))

∣∣∣∣ ddz g−1(z)

∣∣∣∣ =
1√
2πσ

e−(σz+µ−µ)2/2σ2 × σ

=
1√
2π
e−z

2/2.

This is the pdf of Z ∼ N (0, 1). 2

Remark: We can derive E(Z) = 0 and var(Z) = 1 directly (i.e., using expected value
definitions). First,

E(Z) =

∫
R
z

1√
2π
e−z

2/2dz = − 1√
2π

(
e−z

2/2

∣∣∣∣∞
−∞

)
= − 1√

2π
(0− 0) = 0.

Second,

E(Z2) =

∫
R
z2 1√

2π
e−z

2/2︸ ︷︷ ︸
= g(z), say

dz

Note that g(z) is an even function; i.e., g(z) = g(−z), for all z ∈ R. This means that g(z)
is symmetric about z = 0. Therefore, the last integral∫

R
z2 1√

2π
e−z

2/2dz =

∫ ∞
0

z2 2√
2π
e−z

2/2dz.

Now, let u = z2 =⇒ du = 2zdz. The last integral equals∫ ∞
0

z2 2√
2π
e−z

2/2dz =
2√
2π

∫ ∞
0

ue−u/2du
1

2z

=
2√
2π

∫ ∞
0

ue−u/2
1

2
√
u
du

=
1√
2π

∫ ∞
0

u
3
2
−1e−u/2du.

Recognizing u
3
2
−1e−u/2 as the kernel of a gamma distribution with shape parameter α = 3/2

and scale parameter β = 2 (and because we are integrating over R+), the last expression

1√
2π

∫ ∞
0

u
3
2
−1e−u/2du =

1√
2π

Γ

(
3

2

)
23/2

=
1√
2π

1

2
Γ

(
1

2

)
23/2 = 1,

because Γ(1/2) =
√
π. We have shown that E(Z2) = 1. However, because E(Z) = 0, it

follows that var(Z) = E(Z2) = 1 as well.
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Note: Because
Z ∼ N (0, 1) =⇒ X = σZ + µ ∼ N (µ, σ2),

it follows immediately that

E(X) = E(σZ + µ) = σE(Z) + µ = µ

and
var(X) = var(σZ + µ) = σ2var(Z) = σ2.

Remaining issues:

• Showing that fZ(z) integrates to 1 over R is an interesting integration exercise using
polar coordinates; see pp 103-104 (CB).

• We can show directly that if Z ∼ N (0, 1), then the mgf of Z is given by

MZ(t) = E(etZ) =

∫
R
etz

1√
2π
e−z

2/2dz = et
2/2.

• With MZ(t) = et
2/2 and X = σZ + µ, we can use Theorem 2.3.15 to show that

MX(t) = eµtMZ(σt) = eµte(σt)2/2 = eµt+σ
2t2/2.

7. Beta. A random variable X is said to have a beta distribution if its pdf is given by

fX(x|α, β) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1I(0 < x < 1),

where α > 0 and β > 0. Notation: X ∼ beta(α, β). Note that the support of X is
X = {x : 0 < x < 1}; this is different than our other “named” distributions. The beta
distribution is useful in modeling proportions (or probabilities).

Mean/Variance: The relevant moments of X ∼ beta(α, β) are

E(X) =
α

α + β

var(X) =
αβ

(α + β)2(α + β + 1)
.

The mgf of X exists, but its form is usually not very helpful.

Remark: The pdf of X ∼ beta(α, β) is sometimes displayed as

fX(x|α, β) =
1

B(α, β)
xα−1(1− x)β−1I(0 < x < 1),

where

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
=

∫ 1

0

xα−1(1− x)β−1dx
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is the beta function. Note that integrals of the form
∫ 1

0
xα−1(1− x)β−1dx can therefore be

calculated quickly (similarly to our gamma integration result).

Example 3.3. If X ∼ beta(α, β), derive E(Xk), where k > 0.
Solution. By definition,

E(Xk) =

∫ 1

0

xk
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1dx

=
Γ(α + β)

Γ(α)Γ(β)

∫ 1

0

xα+k−1(1− x)β−1dx

=
Γ(α + β)

Γ(α)Γ(β)

Γ(α + k)Γ(β)

Γ(α + k + β)

=
Γ(α + β)Γ(α + k)

Γ(α)Γ(α + β + k)
.

The mean of X, for example, is

E(X) =
Γ(α + β)Γ(α + 1)

Γ(α)Γ(α + β + 1)
=

Γ(α + β) αΓ(α)

Γ(α) (α + β)Γ(α + β)
=

α

α + β
,

as claimed. To derive var(X), calculate E(X2) and use the variance computing formula.

Remark: The pdf of X ∼ beta(α, β) is very flexible; i.e., the pdf fX(x|α, β) can assume
many shapes over X = {x : 0 < x < 1}. For example,

1. α = β =⇒ fX(x|α, β) is symmetric about x = 1/2

• α = β = 1 =⇒ X ∼ U(0, 1)

• α = β = 1
2

=⇒ fX(x|α, β) ∝ x
1
2
−1(1− x)

1
2
−1 is “bathtub-shaped”

2. α > β =⇒ fX(x|α, β) is skewed left

3. α < β =⇒ fX(x|α, β) is skewed right.

8. Cauchy. A random variable X is said to have a Cauchy distribution if its pdf is given
by

fX(x|µ, σ) =
1

πσ
[
1 +

(
x−µ
σ

)2
]I(x ∈ R),

where −∞ < µ < ∞ and σ > 0. Notation: X ∼ Cauchy(µ, σ). The parameters µ and σ
do not represent the mean and standard deviation, respectively.

Note: When µ = 0 and σ = 1, we have Z ∼ Cauchy(0, 1), which is known as the “standard”
Cauchy distribution. The pdf of Z is

fZ(z) =
1

π(1 + z2)
I(z ∈ R)
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and X ∼ Cauchy(µ, σ) and Z ∼ Cauchy(0, 1) are related via X = σZ + µ, similar to what
we observed in the N (µ, σ2) family. Note that∫

R
fZ(z)dz =

1

π

∫ ∞
−∞

1

1 + z2
dz =

1

π

(
arctan z

∣∣∣∣∞
−∞

)
=

1

π

[π
2
−
(
−π

2

)]
= 1,

showing that fZ(z) is a valid pdf.

Remark: If Z ∼ Cauchy(0, 1), then E(Z) does not exist.
Proof. It suffices to show that E(|Z|) = +∞. Note that

E(|Z|) =

∫
R
|z|fZ(z)dz =

∫
R
|z| 1

π(1 + z2)︸ ︷︷ ︸
= g(z), say

dz.

Note that g(z) is an even function; i.e., g(z) = g(−z), for all z ∈ R. This means that g(z)
is symmetric about z = 0. Therefore, the last integral∫

R
|z| 1

π(1 + z2)
dz =

2

π

∫ ∞
0

z

1 + z2
dz

=
2

π

[
ln(1 + z2)

2

∣∣∣∣∞
0

]
= +∞. 2

This result implies that none of Z’s higher order moments exist; e.g., E(Z2), E(Z3), etc.
Also, because X ∼ Cauchy(µ, σ) and Z ∼ Cauchy(0, 1) are related via X = σZ + µ, none of
X’s moments exist either.

Other “named” continuous distributions: There are hundreds (thousands?) of other
“named” continuous distributions. In many ways, this should not be surprising because it
is easy to come up with a valid pdf. If h(x) is a non-negative function with domain D and∫
D h(x)dx = K < ∞, then fX(x) = h(x)/K is a valid pdf! Below I list some additional

named continuous distributions; see CB for pdf and moment formulae.

• Lognormal. X ∼ lognormal(µ, σ2), where −∞ < µ < ∞ and σ2 > 0. This distribu-
tion arises according to the following transformation:

X ∼ N (µ, σ2) =⇒ Y = g(X) = eX ∼ lognormal(µ, σ2).

– positive support: X = {x : x > 0}
– popular competitor to the Weibull distribution in reliability/engineering applica-

tions.

• LaPlace. X ∼ LaPlace(µ, σ), where −∞ < µ <∞ and σ > 0.

– support over R: X = {x : −∞ < x <∞}
– pdf fX(x|µ, σ) is symmetric about µ and has heavy tails, which makes it useful

in robustness discussions
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– sometimes also called the “double exponential distribution.”

• Inverted Gamma. X ∼ IG(α, β), where α > 0 and β > 0. This distribution arises
according to the following transformation:

X ∼ gamma(α, β) =⇒ Y = g(X) =
1

X
∼ IG(α, β).

– positive support: X = {x : x > 0}
– useful distribution to model variances in a Bayesian framework.

• Pareto. X ∼ Pareto(α, β), where α > 0 and β > 0. This distribution arises according
to the following transformation:

X ∼ exponential(1/β) =⇒ Y = g(X) = αeX ∼ Pareto(α, β).

– support: X = {x : x > α}
– useful in economics applications; e.g., income distributions, etc.

• Logistic. X ∼ Logistic(µ, β), where −∞ < µ < ∞ and σ > 0. This distribution
arises according to the following transformation:

X ∼ exponential(1) =⇒ Y = g(X) = µ+ β ln
(
eX − 1

)
∼ Logistic(µ, β).

– support over R: X = {x : −∞ < x <∞}
– if you take the cdf of X ∼ Logistic(µ, β) and write

ln

(
FX(x)

1− FX(x)

)
,

this is a linear function of x; this forms the basis for logistic regression.

Note: There are many more distributions that I will not list. Many “named” distributions
arise in CB’s exercises; look for these and do them. An excellent expository account of
probability distributions (both discrete and continuous) and distributional relationships is
given in the following paper:

• Leemis, L. and McQueston, J. (2008). Univariate distribution relationships. American
Statistician 62, 45-53.

3.4 Exponential Families

Definition: A family {fX(x|θ);θ ∈ Θ} of pdfs (or pmfs) is called an exponential family
if its members can be expressed as

fX(x|θ) = h(x)c(θ) exp

{
k∑
i=1

wi(θ)ti(x)

}
,

for real functions h(·), c(·), wi(·), and ti(·), where
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• h(x) ≥ 0 cannot depend on θ

• c(θ) ≥ 0 cannot depend on x

• w1(θ), w2(θ), ..., wk(θ) cannot depend on x

• t1(x), t2(x), ..., tk(x) cannot depend on θ.

Remark: Many families we know are exponential families; e.g., Poisson, normal, binomial,
gamma, beta, etc. However, not all families can be “put into” this form; i.e., there are
families that are not exponential families. We will see examples of some later.

Example 3.4. Suppose that X ∼ Poisson(θ); i.e., the pmf of X is

fX(x|θ) =

 θxe−θ

x!
, x = 0, 1, 2, ...

0, otherwise,

where Θ = {θ : θ > 0}. Write the support X = {x : x = 0, 1, 2, ..., } and the pmf as

fX(x|θ) =
θxe−θ

x!
I(x ∈ X )

=
I(x ∈ X )

x!
e−θ ex ln θ

= h(x)c(θ) exp {w1(θ)t1(x)} ,

where h(x) = I(x ∈ X )/x!, c(θ) = e−θ, w1(θ) = ln θ, and t1(x) = x. Therefore, the
Poisson(θ) family of pmfs is an exponential family with k = 1.

Example 3.5. Suppose that X ∼ gamma(α, β); i.e., the pdf of X is

fX(x|α, β) =
1

Γ(α)βα
xα−1e−x/βI(x > 0),

where Θ = {θ = (α, β)′ : α > 0, β > 0}. Note that the pdf of X can be written as

fX(x|α, β) =
I(x > 0)

x

1

Γ(α)βα
eα lnx e−x/β

=
I(x > 0)

x

1

Γ(α)βα
exp

(
α lnx− x

β

)
= h(x)c(θ) exp{w1(θ)t1(x) + w2(θ)t2(x)},

where h(x) = I(x > 0)/x, c(θ) = [Γ(α)βα]−1, w1(θ) = α, t1(x) = ln x, w2(θ) = −1/β, and
t2(x) = x. Therefore, the gamma(α, β) family of pdfs is an exponential family with k = 2.

Remark: As noted earlier, some families are not exponential families. For example, suppose
that X ∼ LaPlace(µ, σ); i.e., the pdf of X is

fX(x|µ, σ) =
1

2σ
e−|x−µ|/σI(x ∈ R),
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where Θ = {θ = (µ, σ)′ : −∞ < µ < ∞, σ > 0}. It is not possible to put this pdf into
exponential family form (the absolute value term |x − µ| messes things up). As another
example, suppose X ∼ fX(x|θ), where

fX(x|θ) = e−(x−θ)I(x > θ),

where Θ = {θ : −∞ < θ <∞}. The indicator function I(x > θ) ≡ I(θ,∞)(x) can neither be
“absorbed” into h(x) nor into c(θ).

Important: Anytime you have a pdf/pmf fX(x|θ) where the support X depends on an
unknown parameter θ, it is not possible to put fX(x|θ) into exponential family form.

Remark: In some instances, it is helpful to work with the exponential family in its canonical
representation; see pp 114 (CB). We will not highlight this parameterization.

Important: Suppose that X has pdf in the exponential family; i.e., the pdf of X can be
expressed as

fX(x|θ) = h(x)c(θ) exp

{
k∑
i=1

wi(θ)ti(x)

}
,

where θ = (θ1, θ2, ..., θd)
′ and d = dim(θ).

• When d = k, we call {fX(x|θ);θ ∈ Θ} a full exponential family.

• When d < k, we call {fX(x|θ);θ ∈ Θ} a curved exponential family.

Example 3.6. Suppose that X ∼ gamma(α, β); i.e., the pdf of X is

fX(x|α, β) =
1

Γ(α)βα
xα−1e−x/βI(x > 0),

where Θ = {θ = (α, β)′ : α > 0, β > 0}. In Example 3.5, we showed that this was
an exponential family with d = k = 2. Therefore, the gamma(α, β) family is a full ex-
ponential family. Now consider the gamma(α, β) subfamily where β = 1/α2, that is,
X ∼ gamma(α, 1/α2). The pdf of X is

fX(x|α) =
1

Γ(α)
(

1
α2

)α xα−1e−x/(1/α
2)I(x > 0)

=
I(x > 0)

x

α2α

Γ(α)
eα lnx e−α

2x

=
I(x > 0)

x

α2α

Γ(α)
exp

(
α lnx− α2x

)
= h(x)c(α) exp{w1(α)t1(x) + w2(α)t2(x)},

where h(x) = I(x > 0)/x, c(α) = α2α/Γ(α), w1(α) = α, t1(x) = ln x, w2(α) = −α2, and
t2(x) = x. Therefore, the gamma(α, 1/α2) subfamily has d = 1 and k = 2. Because d < k,
the gamma(α, 1/α2) family is a curved exponential family.
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Remark: For the original gamma(α, β) family, the parameter space is

Θ = {θ = (α, β)′ : α > 0, β > 0}.

For the gamma(α, 1/α2) subfamily, the parameter space is

Θ0 =

{
θ = (α, β)′ : α > 0, β =

1

α2

}
.

Clearly Θ0 ⊂ Θ. Also, note that Θ contains an open set in R2, but Θ0 does not. These
theoretical issues will be important in Chapter 6 when we study sufficient statistics (data
reduction) and completeness.

3.5 Location and Scale Families

Result: Suppose that Z is a continuous random variable with cdf FZ(z) and pdf fZ(z).
Define X = σZ + µ, where −∞ < µ <∞ and σ > 0. The pdf of X can be written in terms
of the pdf of Z, specifically,

fX(x|µ, σ) =
1

σ
fZ

(
x− µ
σ

)
.

Proof. The cdf of X is

FX(x|µ, σ) = PX(X ≤ x|µ, σ) = PZ(σZ + µ ≤ x)

= PZ

(
Z ≤ x− µ

σ

)
= FZ

(
x− µ
σ

)
.

The pdf of X is therefore

fX(x|µ, σ) =
d

dx
FX(x|µ, σ) =

d

dx
FZ

(
x− µ
σ

)
=

1

σ
fZ

(
x− µ
σ

)
,

the last step following from the chain rule. That fX(x|µ, σ) is a valid pdf is easy to show.
Clearly fX(x|µ, σ) is non-negative because σ > 0 and fZ(z) is a pdf. Also,∫

R
fX(x|µ, σ)dx =

∫
R

1

σ
fZ

(
x− µ
σ

)
dx =

∫
R
fZ(z)dz = 1,

the last step following after making a z = (x− µ)/σ substitution. 2

Remark: In the language of location-scale families, we call fZ(z) a standard pdf. With
fZ(z) and the transformation X = σZ + µ, we can “generate” a family of probability
distributions indexed by µ and σ.
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Remark: What we have just proven is essentially the sufficiency part (⇐=) of Theorem
3.5.6 (pp 120 CB). The necessity part (=⇒) is also true, that is, if

fX(x|µ, σ) =
1

σ
fZ

(
x− µ
σ

)
,

then there exists a random variable Z ∼ fZ(z) such that X = σZ + µ.

Definition: The collection of pdfs

{fX(x|µ) = fZ(x− µ); µ ∈ R}

is called a location family generated by fZ(z). The parameter µ is called a location
parameter. From our previous result (taking σ = 1), we have that

Z ∼ fZ(z) =⇒ X = Z + µ ∼ fX(x|µ) = fZ(x− µ).

Example 3.7. Suppose that Z ∼ exponential(1); i.e., the pdf of Z is

fZ(z) = e−zI(z > 0).

The pdf of X = Z + µ is therefore

fX(x|µ) = fZ(x− µ) = e−(x−µ)I(x− µ > 0)

= e−(x−µ)I(x > µ).

This is called a shifted exponential distribution with location parameter µ. The pdf of
any member of this family is obtained by taking fZ(z) and shifting it to the left or right
depending on if µ < 0 or µ > 0.

Definition: The collection of pdfs{
fX(x|σ) =

1

σ
fZ

(x
σ

)
; σ > 0

}
is called a scale family generated by fZ(z). The parameter σ is called a scale parameter.
From our previous result (taking µ = 0), we have that

Z ∼ fZ(z) =⇒ X = σZ ∼ fX(x|σ) =
1

σ
fZ

(x
σ

)
.

Example 3.8. Suppose that X ∼ N (0, σ2); i.e., the pdf of X is

fX(x|σ2) =
1√
2πσ

e−x
2/2σ2

I(x ∈ R),

where σ2 > 0. Show that the N (0, σ2) family is a scale family.
Solution. We have to identify the standard pdf fZ(z) and the scale parameter σ that makes

fX(x|σ2) =
1

σ
fZ

(x
σ

)
.
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Note that if we take the N (0, 1) pdf; i.e.,

fZ(z) =
1√
2π
e−z

2/2I(z ∈ R),

then

1

σ
fZ

(x
σ

)
=

1

σ

1√
2π
e−( xσ )

2
/2I
(x
σ
∈ R

)
=

1√
2πσ

e−x
2/2σ2

I(x ∈ R)︸ ︷︷ ︸
= fX(x|σ2)

.

Thus, the N (0, σ2) family is a scale family with standard pdf fZ(z) and scale parameter σ.

Remark: In Example 3.8, we see that the scale parameter σ > 0 does, in fact, represent
the standard deviation of X. However, in general, µ and σ do not necessarily represent the
mean and standard deviation.

Definition: The collection of pdfs{
fX(x|µ, σ) =

1

σ
fZ

(
x− µ
σ

)
; µ ∈ R, σ > 0

}
is called a location-scale family generated by fZ(z).

Example 3.9. Suppose that X ∼ Cauchy(µ, σ); i.e., the pdf of X is

fX(x|µ, σ) =
1

πσ
[
1 +

(
x−µ
σ

)2
]I(x ∈ R),

where −∞ < µ < ∞ and σ > 0. It is easy to see that the Cauchy(µ, σ) family is a
location-scale family generated by the standard pdf

fZ(z) =
1

π(1 + z2)
I(z ∈ R).

However, note that µ and σ do not refer to the mean and standard deviation of X ∼
Cauchy(µ, σ); recall that E(X) does not even exist for X ∼ Cauchy(µ, σ). In this family, µ
satisfies

PX(X ≤ µ) =

∫ µ

−∞
fX(x|µ, σ)dx = 0.5;

i.e., µ is the median of X. Also, 2σ = IQR(X), the interquartile range of X.

Theorem 3.5.7. Suppose that Z ∼ fZ(z) and let X = σZ + µ. If E(Z) and var(Z) exist,
then

E(X) = σE(Z) + µ and var(X) = σ2var(Z).
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Proof. The expected value of X is

E(X) = E(σZ + µ) =

∫
R
(σz + µ)fZ(z)dz

= σ

∫
R
zfZ(z)dz +

∫
R
µfZ(z)dz

= σE(Z) + µ.

Showing var(X) = σ2var(Z) involves slightly more work, but is just as straightforward. 2

Special case: If E(Z) = 0 and var(Z) = 1, then E(X) = µ and var(X) = σ2.

Calculating probabilities: Suppose that Z ∼ fZ(z), FZ(z) and define X = σZ + µ. We
know that X has a location-scale pdf given by

fX(x|µ, σ) =
1

σ
fZ

(
x− µ
σ

)
and

PX(X ≤ x|µ, σ) = FX(x|µ, σ) = FZ

(
x− µ
σ

)
.

Therefore, calculating probabilities of events of the form {X ≤ x} can be done by using the
cdf of Z, regardless of the values of µ and σ. This fact is often exploited in introductory
courses where FZ(z) is presented in tabular form; Z ∼ N (0, 1), for example. Of course, with
computing today (e.g., R, etc.), this clumsy method of calculation is no longer necessary.

3.6 Inequalities and Identities

Remark: This section is split into two sub-sections:

• Section 3.6.1. Probability Inequalities

• Section 3.6.2. Identities (read on your own).

We will discuss only two results; other results are left as exercises. Markov’s Inequality is
actually presented in the Miscellanea section; see pp 136 (CB).

Markov’s Inequality: Suppose Y is a random variable with

• PY (Y ≥ 0) = 1; i.e., Y is a lifetime random variable

• PY (Y = 0) < 1; i.e., Y is not degenerate at y = 0.
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For any r > 0,

PY (Y ≥ r) ≤ E(Y )

r
.

Proof. The expected value of Y is

E(Y ) =

∫ ∞
0

yfY (y)dy ≥
∫
{y:y≥r}

yfY (y)dy

≥
∫
{y:y≥r}

rfY (y)dy = rPY (Y ≥ r). 2

Chebyshev’s Inequality: Suppose X is a random variable with var(X) = σ2 < ∞. For
any k > 0,

PX(|X − µ| ≥ kσ) ≤ 1

k2
.

Proof. Rewrite the event {|X − µ| ≥ kσ} = {(X − µ)2 ≥ k2σ2}. This is justified because
|X − µ|, k, and σ are all non-negative. Therefore,

PX(|X − µ| ≥ kσ) = PX((X − µ)2 ≥ k2σ2).

Now, apply Markov’s Inequality to the RHS with Y = (X − µ)2 and r = k2σ2 to get

PX((X − µ)2 ≥ k2σ2) ≤ E[(X − µ)2]

k2σ2
=

σ2

k2σ2
=

1

k2
. 2

Remarks:

• Chebyshev’s Inequality can be equivalently stated as

PX(|X − µ| < kσ) ≥ 1− 1

k2
.

• Both Markov and Chebyshev bounds can be very conservative (i.e., they can be very
crude upper/lower bounds). For example, suppose that Y ∼ exponential(5). Using
Markov’s upper bound for PY (Y > 15) gives

PY (Y > 15) ≤ E(Y )

15
=

5

15
.

However, the actual probability; i.e., when calculated under the exponential(5) model
assumption, is

PY (Y > 15) =

∫ ∞
15

1

5
e−y/5dy ≈ 0.0498.

That Markov and Chebyshev bounds are conservative in general should not be surpris-
ing. These bounds utilize very little information about the true underlying distribution.
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4 Multiple Random Variables

Complementary reading: Chapter 4 (CB). Sections 4.1-4.7.

4.1 Joint and Marginal Distributions

Definition: Let (S,B, P ) be a probability space for a random experiment. Suppose that
X−1(B) ∈ B and Y −1(B) ∈ B, for all B ∈ B(R); i.e., X and Y are both random variables
on (S,B, P ). We call (X, Y ) a bivariate random vector.

• When viewed as a function, (X, Y ) is a mapping from (S,B, P ) to (R2,B(R2), PX,Y ).

• Sets B ∈ B(R2) are called (two-dimensional) Borel sets. One can characterize B(R2)
as the smallest σ-algebra generated by the collection of all half-open rectangles; i.e.,

{(x1, x2) : −∞ < x1 ≤ a1,−∞ < x2 ≤ a2, a1, a2 ∈ R}.

• PX,Y is a probability measure induced by the random vector (X, Y ).

Note: Generalizing this definition to n-dimensional random vectors X = (X1, X2, ..., Xn) is
straightforward and we do this in Section 4.6. In this case, X is a mapping from (S,B, P )
to (Rn,B(Rn), PX) with the property that

X−1(B) ≡ {ω ∈ S : X(ω) ∈ B} ∈ B,

for all B ∈ B(Rn). As in the univariate random variable case, the measurability condi-
tion X−1(B) ∈ B, for all B ∈ B(Rn), suggests that events of interest like {X ∈ B} on
(Rn,B(Rn), PX) can be assigned a probability in the same way that {ω ∈ S : X(ω) ∈ B}
can be assigned a probability on (S,B, P ).

Example 4.1. Experiment: Toss two dice. Assume the model

S = {ω = (ω1, ω2) : ωi ∈ {1, 2, ..., 6}, i = 1, 2}
B = 2S

P = equiprobability measure; i.e., P ({ω}) = 1/36, for all ω ∈ S.

Define the random variables

X1 = sum; i.e., X1(ω) = ω1 + ω2

X2 = absolute difference; i.e., X2(ω) = |ω1 − ω2|

and let X = (X1, X2). The bivariate random vector

X(ω) =

(
X1

X2

)
(ω) =

(
X1(ω)
X2(ω)

)
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is a vector of (univariate) random variables on (S,B, P ). To show how probabilities are
assigned on (R2,B(R2), PX1,X2), consider the (two-dimensional) Borel set B = {(5, 3)} ∈ R2.
Note that

X−1({(5, 3)}) = {ω ∈ S : X(ω) = (5, 3)} = {(1, 4), (4, 1)} ∈ B.

This suggests that we can write

PX1,X2(X ∈ B) = PX1,X2(X1 = 5, X2 = 3)︸ ︷︷ ︸
calculated on (R2,B(R2))

= P ({(1, 4), (4, 1)})︸ ︷︷ ︸
calculated on (S,B)

=
2

36
.

Note: From now on, I will not emphasize probability as an induced measure (e.g., write
PX , PX,Y , etc.), unless it is important to do so.

Definition: We call (X, Y ) a discrete random vector if there exists a countable (support)
set A ⊂ R2 such that P ((X, Y ) ∈ A) = 1. The joint probability mass function (pmf) of
(X, Y ) is a function fX,Y : R2 → [0, 1] defined by

fX,Y (x, y) = P (X = x, Y = y).

Analogous to the univariate case; i.e., as an extension of Theorem 1.6.5 (pp 36 CB), we have

(a) fX,Y (x, y) ≥ 0, for all (x, y) ∈ R2

(b)
∑∑

(x,y)∈A fX,Y (x, y) = 1.

Also, for any B ∈ B(R2),

P ((X, Y ) ∈ B) =
∑∑
(x,y)∈B

fX,Y (x, y).

Definition: Suppose that (X, Y ) is a discrete random vector with pmf fX,Y (x, y), support
A ⊂ R2, and suppose g : R2 → R. Then g(X, Y ) is a univariate random variable and its
expected value is

E[g(X, Y )] =
∑∑
(x,y)∈A

g(x, y)fX,Y (x, y).

This definition is analogous to the definition of mathematical expectation for univari-
ate discrete random variables. Existence issues are also identical; i.e., we need the sum
above to converge absolutely (this concern only arises when A is countably infinite). If∑∑

(x,y)∈A |g(x, y)|fX,Y (x, y) does not converge, then E[g(X, Y )] does not exist.

Remark: The expectation properties summarized in Theorem 2.2.5 (pp 57 CB) for functions
of univariate random variables also apply to functions of random vectors. Let a, b, and c be
constants. For any functions g1(x, y) and g2(x, y) whose expectations exist,

(a) E[ag1(X, Y ) + bg2(X, Y ) + c] = aE[g1(X, Y )] + bE[g2(X, Y )] + c
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(b) if g1(x, y) ≥ 0 for all x, y, then E[g1(X, Y )] ≥ 0

(c) if g1(x, y) ≥ g2(x, y) for all x, y, then E[g1(X, Y )] ≥ E[g2(X, Y )]

(d) if a ≤ g1(x, y) ≤ b for all x, y, then a ≤ E[g1(X, Y )] ≤ b.

These results are also true when (X, Y ) is a continuous random vector (to be defined shortly).

Marginal Distributions (Discrete case): Suppose (X, Y ) is a discrete random vector with
pmf fX,Y (x, y). Suppose B ∈ B(R). Note that

P (X ∈ B) = P (X ∈ B, Y ∈ R) = P ((X, Y ) ∈ B × R)

=
∑∑

(x,y)∈B×R

fX,Y (x, y)

=
∑
x∈B

∑
y∈R

fX,Y (x, y)︸ ︷︷ ︸
= fX(x)

.

We call
fX(x) =

∑
y∈R

fX,Y (x, y)

the marginal probability mass function (pmf) of X. Similarly, we call

fY (y) =
∑
x∈R

fX,Y (x, y)

the marginal pmf of Y . In other words, to find the marginal pmf of one random variable,
you take the joint pmf and sum over the values of the other random variable.

Example 4.2. Suppose the joint distribution of (X, Y ) is described via the following con-
tingency table:

y

0 1 2

x
0 0.1 0.2 0.2
1 0.3 0.1 0.1

The entries in the table are the joint probabilities fX,Y (x, y). The support of (X, Y ) is

A = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}.

We use this joint pmf to calculate various quantities, illustrating many of the ideas we have
seen so far. For example,

P (X = 1, Y = 1) = fX,Y (1, 1) = 0.1
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and

E(XY ) =
1∑

x=0

2∑
y=0

xy fX,Y (x, y)

= (0)(0)(0.1) + (0)(1)(0.2) + (0)(2)(0.2) + (1)(0)(0.3) + (1)(1)(0.1) + (1)(2)(0.1)

= 0.3.

The marginal pmfs of X and Y are, respectively,

fX(x) = 0.5I(x = 0) + 0.5I(x = 1)

fY (y) = 0.4I(y = 0) + 0.3I(y = 1) + 0.3I(y = 2).

Note that

E(X) = 0.5

E(Y ) = 0.9.

These can be calculated from the marginal distributions fX(x) and fY (y), respectively, or
from using the joint distribution, for example,

E(X) =
1∑

x=0

2∑
y=0

x fX,Y (x, y)

= (0)(0.1) + (0)(0.2) + (0)(0.2) + (1)(0.3) + (1)(0.1) + (1)(0.1) = 0.5.

Definition: We call (X, Y ) a continuous random vector if there exists a function fX,Y :
R2 → R such that, for all B ∈ B(R2),

P ((X, Y ) ∈ B) =

∫ ∫
B

fX,Y (x, y)dxdy.

We call fX,Y (x, y) a joint probability density function (pdf) of (X, Y ). Analogous to
the univariate case; i.e., as an extension of Theorem 1.6.5 (pp 36 CB), we have

(a) fX,Y (x, y) ≥ 0, for all (x, y) ∈ R2

(b)
∫ ∫

R2 fX,Y (x, y)dxdy = 1.

Example 4.3. Suppose (X, Y ) is a continuous random vector with joint pdf

fX,Y (x, y) = cxy I(0 < y < x < 1).

(a) Find the constant c.
(b) Calculate P (X − Y > 1

8
).
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Figure 4.1: A graph of the support A = {(x, y) ∈ R2 : 0 < y < x < 1} in Example 4.3.

Solution. First, note that the two-dimensional support set identified in the indicator function
I(0 < y < x < 1) is

A = {(x, y) ∈ R2 : 0 < y < x < 1}

which is depicted in Figure 4.1. The joint pdf fX,Y (x, y) is a three-dimensional function
which is nonzero over this set (and is zero otherwise). To do part (a), we know that∫ ∫

R2

fX,Y (x, y)dxdy = 1.

Therefore, the calculation ∫ 1

y=0

∫ 1

x=y

cxy dxdy =
c

8
set
= 1

shows that c = 8. The joint pdf of (X, Y ) is therefore

fX,Y (x, y) = 8xy I(0 < y < x < 1).

To calculate P (X − Y > 1
8
) in part (b), we simply integrate fX,Y (x, y) over the set

B =

{
(x, y) ∈ R2 : 0 < y < x < 1, x− y > 1

8

}
.
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The boundary of the set B is determined as follows:

x− y =
1

8
=⇒ y = x− 1

8
.

Therefore,

P

(
X − Y >

1

8

)
=

∫ ∫
B

fX,Y (x, y) dxdy

=

∫ 7
8

y=0

∫ 1

x=y+ 1
8

8xy dxdy ≈ 0.698.

This probability could also be calculated by interchanging the order of the integration (and
adjusting the limits) as follows:∫ 1

x= 1
8

∫ x− 1
8

y=0

8xy dxdy ≈ 0.698.

Remark: Either way, we see that the limits on the double integral come directly from a
well-constructed picture of the support and the region over which we are integrating. When
working with joint distributions, not taking time to construct good pictures of the support
and regions of integration usually (i.e., almost always) leads to the wrong answer.

Definition: Suppose (X, Y ) is a continuous random vector with pdf fX,Y (x, y) and suppose
g : R2 → R. Then g(X, Y ) is a univariate random variable and its expected value is

E[g(X, Y )] =

∫ ∫
R2

g(x, y)fX,Y (x, y)dxdy.

This definition is analogous to the definition of mathematical expectation for univariate
continuous random variables. Existence issues are also identical; i.e., we need the integral
above to converge absolutely. If

∫ ∫
R2 |g(x, y)|fX,Y (x, y)dxdy is not finite, then E[g(X, Y )]

does not exist.

Example 4.4. Suppose (X, Y ) is a continuous random vector with joint pdf

fX,Y (x, y) = 8xy I(0 < y < x < 1),

as in Example 4.3 (see the support A in Figure 4.1). We have

E(X2Y ) =

∫ ∫
R2

x2y fX,Y (x, y)dxdy

=

∫ 1

y=0

∫ 1

x=y

x2y × 8xy dxdy

=

∫ 1

y=0

∫ 1

x=y

8x3y2 dxdy =
2

7
.
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Marginal Distributions (Continuous case): Suppose (X, Y ) is a continuous random vector
with pdf fX,Y (x, y). Suppose B ∈ B(R). Note that

P (X ∈ B) = P (X ∈ B, Y ∈ R) = P ((X, Y ) ∈ B × R)

=

∫ ∫
B×R

fX,Y (x, y)dxdy

=

∫
B

∫
R
fX,Y (x, y)dy︸ ︷︷ ︸

= fX(x)

dx.

We call

fX(x) =

∫
R
fX,Y (x, y)dy

the marginal probability density function (pdf) of X. Similarly, we call

fY (y) =

∫
R
fX,Y (x, y)dx

the marginal pdf of Y .

Main point: To find the marginal pdf of one random variable, you take the joint pdf and
integrate over the other variable.

Example 4.5. Suppose (X, Y ) is a continuous random vector with joint pdf

fX,Y (x, y) = 8xy I(0 < y < x < 1),

as in Example 4.3 (see the support A in Figure 4.1). The marginal pdf of X is, for 0 < x < 1,

fX(x) =

∫ x

y=0

8xy dy = 4x3.

The marginal pdf of Y is, for 0 < y < 1,

fY (y) =

∫ 1

x=y

8xy dx = 4y(1− y2).

Summarizing,

fX(x) = 4x3I(0 < x < 1) and fY (y) = 4y(1− y2)I(0 < y < 1).

These marginal pdfs are shown in Figure 4.2 (next page). Note that X has a beta distribution
with parameters α = 4 and β = 1; i.e., X ∼ beta(4, 1). The random variable Y does not
have a “named” distribution but its pdf is clearly valid.
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Figure 4.2: Marginal pdf of X (left) and marginal pdf of Y (right) in Example 4.5. Note that
the marginal distribution of X is beta with parameters α = 4 and β = 1; i.e., X ∼ beta(4, 1).

Extension: Suppose that in the last example, we wanted to calculate P (Y > 1
2
). We could

do this in two ways:

1. Using the marginal distribution of Y ,

P

(
Y >

1

2

)
=

∫ 1

y= 1
2

fY (y)dy =
9

16

2. Using the joint distribution of (X, Y ),

P

(
Y >

1

2

)
=

∫ 1

y= 1
2

∫ 1

x=y

fX,Y (x, y)dxdy =
9

16
.

Note geometrically what we are doing in each case. In (1), we are calculating the area
under fY (y) over the set B = {y : 1

2
< y < 1}. In (2), we are calculating the volume under

fX,Y (x, y) over the set B = {(x, y) : 0 < y < x < 1, 1
2
< y < 1}.

Example 4.6. Suppose (X, Y ) is a continuous random vector with joint pdf

fX,Y (x, y) = e−(x+y)I(x > 0, y > 0).

In this problem, we find the distribution of

Z = g(X, Y ) =
X

Y
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and calculate E(Z). First, note that the two-dimensional support set identified in the indi-
cator function I(x > 0, y > 0) is

A = {(x, y) ∈ R2 : x > 0, y > 0} = R+ × R+.

The joint pdf fX,Y (x, y) is a three-dimensional function which is nonzero over this set (and is
zero otherwise). Clearly, the random variable Z has positive support, say Z = {z : z > 0}.
We derive the cdf of Z first:

FZ(z) = P (Z ≤ z) = P

(
X

Y
≤ z

)
z>0
=

∫ ∫
B

fX,Y (x, y)dxdy,

where the set B = {(x, y) ∈ R2 : x > 0, y > 0, x
y
≤ z}. The boundary of the set B is

determined as follows:
x

y
= z =⇒ y =

x

z
.

The double integral above becomes∫ ∞
x=0

∫ ∞
y=x/z

e−(x+y)dydx =
z

z + 1
.

Therefore, the cdf of Z is

FZ(z) =

{
0, z ≤ 0
z

z + 1
, z > 0.

The pdf of Z is

fZ(z) =
d

dz
FZ(z)

=
1

(z + 1)2
I(z > 0)

and is shown in Figure 4.3 (next page). Finally, note that

E(Z) =

∫
R
zfZ(z)dz =

∫ ∞
0

z

(z + 1)2
dz

u=z+1
=

∫ ∞
1

u− 1

u2
du

=

(
lnu+

1

u

)∣∣∣∣∞
u=1

= +∞;

i.e., E(Z) does not exist.
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Figure 4.3: Pdf of Z in Example 4.6.

Definition: Suppose that (X, Y ) is a random vector (discrete or continuous). The joint
cumulative distribution function (cdf) of (X, Y ) is

FX,Y (x, y) = P (X ≤ x, Y ≤ y), for all (x, y) ∈ R2.

As in the univariate case, a random vector’s cdf completely determines its distribution. If
(X, Y ) is continuous with joint pdf fX,Y (x, y), then

FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
fX,Y (u, v)dvdu

and
∂2FX,Y (x, y)

∂x∂y
= fX,Y (x, y).

These expressions summarize how fX,Y (x, y) and FX,Y (x, y) are related in bivariate settings.

Remark: The following material (on joint mgfs) is not covered in CB’s §4.1 but is very
useful. In addition, this material will be presented in other courses (e.g., STAT 714, etc.).

Definition: Suppose that X = (X1, X2)′ is a bivariate random vector (discrete or continu-
ous). The joint moment generating function (mgf) of X1 and X2 is

MX(t) = E(et
′X) = E(et1X1+t2X2),
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where t = (t1, t2)′. For MX(t) to exist, this expectation must be finite in an open neighbor-
hood about t = 0; i.e., E(et1X1+t2X2) <∞ ∀t1 ∈ (−h1, h1) ∀t2 ∈ (−h2, h2) ∃h1 > 0 ∃h2 > 0.

Notes:

1. We may also write
MX(t) = MX1,X2(t1, t2).

2. As with mgfs for univariate random variables, a random vector’s mgf MX(t) uniquely
identifies the distribution of X.

3. It is easy to see that

MX1(t1) = MX1,X2(t1, 0)

MX2(t2) = MX1,X2(0, t2).

Therefore, the marginal mgfs are easily obtained from the joint mgf.

Example 4.7. Suppose X = (X1, X2)′ is a continuous random vector with joint pdf

fX1,X2(x1, x2) = e−x2I(0 < x1 < x2 <∞).

The joint mgf of X1 and X2 is

MX1,X2(t1, t2) = E(et1X1+t2X2)

=

∫ ∫
R2

et1x1+t2x2fX1,X2(x1, x2)dx1dx2

=

∫ ∞
x2=0

∫ x2

x1=0

et1x1+t2x2e−x2 dx1dx2

=
1

(1− t1 − t2)(1− t2)
,

provided that t1 + t2 < 1 and t2 < 1. Therefore, the marginal mgf of X1 is

MX1(t1) = MX1,X2(t1, 0) =
1

1− t1
, for t1 < 1,

and the marginal mgf of X2 is

MX2(t2) = MX1,X2(0, t2) =

(
1

1− t2

)2

, for t2 < 1.

Because mgfs are unique, we see that

X1 ∼ exponential(1)

X2 ∼ gamma(2, 1).
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Definition: Suppose that X = (X1, X2)′ is a random vector. The expected value of X is

E(X) =

(
E(X1)
E(X2)

)
2×1

,

provided that both E(X1) and E(X2) exist. In the last example, we see that

E(X) =

(
1
2

)
.

It is also possible to calculate E(X) using the joint mgf:

E(X) =
∂MX(t)

∂t

∣∣∣∣∣
t=0

=

 ∂MX(t)

∂t1
∂MX(t)

∂t2

∣∣∣∣∣
t1=t2=0

;

i.e., E(X) is the gradient of MX(t) evaluated at t = 0. Verify this with Example 4.7.

4.2 Conditional Distributions and Independence

Conditional Distributions (Discrete case): Suppose (X, Y ) is a discrete random vector
with pmf fX,Y (x, y). The conditional probability mass function (pmf) of Y given X = x
is

fY |X(y|x) =
fX,Y (x, y)

fX(x)
,

which is defined for values of x where fX(x) > 0. In the discrete case, this definition follows
directly from the definition of conditional probability; i.e.,

fY |X(y|x) ≡ P (Y = y|X = x)

=
P (X = x, Y = y)

P (X = x)

=
fX,Y (x, y)

fX(x)
.

Interpretation: The function fY |X(y|x) is a univariate pmf; it describes the distribution of
Y (i.e., how Y varies) when X is fixed at the value x. Similarly, the conditional pmf of X
given Y = y is

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
,

which is defined for values of y where fY (y) > 0. This function is a univariate pmf and
describes the distribution of X (i.e., how X varies) when Y is fixed at the value y.
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Example 4.8. We revisit the joint pmf of (X, Y ) in Example 4.2:

y

0 1 2

x
0 0.1 0.2 0.2
1 0.3 0.1 0.1

The conditional pmf of Y , when X = x = 0, is found as follows:

fY |X(0|0) =
fX,Y (0, 0)

fX(0)
=

0.1

0.5
= 0.2 (for y = 0)

fY |X(1|0) =
fX,Y (0, 1)

fX(0)
=

0.2

0.5
= 0.4 (for y = 1)

fY |X(2|0) =
fX,Y (0, 2)

fX(0)
=

0.2

0.5
= 0.4 (for y = 2)

Therefore,
fY |X(y|0) = 0.2I(y = 0) + 0.4I(y = 1) + 0.4I(y = 2).

Note: Suppose B ∈ B(R). Conditional probabilities can be calculated using conditional
pmfs as follows:

P (Y ∈ B|X = x) =
∑
y∈B

fY |X(y|x)

P (X ∈ B|Y = y) =
∑
x∈B

fX|Y (x|y).

For example, in Example 4.8,

P (Y ≤ 1|X = 0) =
1∑
y=0

fY |X(y|0) = 0.2 + 0.4 = 0.6.

Conditional Distributions (Continuous case): Suppose (X, Y ) is a continuous random
vector with pdf fX,Y (x, y). The conditional probability density function (pdf) of Y
given X = x is

fY |X(y|x) =
fX,Y (x, y)

fX(x)
,

which is defined for values of x where fX(x) > 0.

Interpretation: The function fY |X(y|x) is a univariate pdf; it describes the distribution of
Y (i.e., how Y varies) when X is fixed at the value x. Similarly, the conditional pdf of X
given Y = y is

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
,
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Figure 4.4: Example 4.9. Left: Conditional pdf of Y when x = 2. Right: Conditional pdf of
X when y = 5. Note that the vertical axes are different in the two figures.

which is defined for values of y where fY (y) > 0. This function is a univariate pdf and
describes the distribution of X (i.e., how X varies) when Y is fixed at the value y.

Example 4.9. In Example 4.7, we worked with the joint pdf

fX,Y (x, y) = e−yI(0 < x < y <∞).

Recall that we showed (using mgfs) that X ∼ exponential(1) and Y ∼ gamma(2, 1) so that
the marginal pdfs are

fX(x) = e−xI(x > 0)

fY (y) = ye−yI(y > 0).

The conditional pdf of Y given X = x is therefore

fY |X(y|x) =
fX,Y (x, y)

fX(x)

=
e−yI(0 < x < y <∞)

e−xI(x > 0)
= e−(y−x)I(y > x).

This function describes the distribution of Y when X is fixed at x > 0. In Figure 4.4 (left),
we display this conditional density when x = 2; i.e.,

fY |X(y|x = 2) = e−(y−2)I(y > 2).
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The conditional pdf of X given Y = y is

fX|Y (x|y) =
fX,Y (x, y)

fY (y)

=
e−yI(0 < x < y <∞)

ye−yI(y > 0)
=

1

y
I(0 < x < y).

This function describes the distribution of X when Y is fixed at y > 0. In Figure 4.4 (right),
we display this conditional density when y = 5; i.e.,

fX|Y (x|y = 5) =
1

5
I(0 < x < 5).

Remark: Note that Y |{X = x} has a shifted exponential distribution with location “pa-
rameter” x. Similarly, note that X|{Y = y} ∼ U(0, y).

Note: Suppose B ∈ B(R). Conditional probabilities can be calculated using conditional
pdfs as follows:

P (Y ∈ B|X = x) =

∫
B

fY |X(y|x)dy

P (X ∈ B|Y = y) =

∫
B

fX|Y (x|y)dx.

For example, in Example 4.9,

P (Y < 5|X = 2) =

∫ 5

y=2

e−(y−2)dy = 1− e−3

and

P (X > 3|Y = 5) =

∫ 5

x=3

1

5
dx =

2

5
.

Note: We now formally define conditional expectation (e.g., conditional means, conditional
variances, and conditional mgfs).

Definition: Suppose (X, Y ) is a continuous random vector. We define conditional expec-
tations as follows:

E[g(Y )|X = x] =

∫
R
g(y)fY |X(y|x)dy

E[h(X)|Y = y] =

∫
R
h(x)fX|Y (x|y)dx.

Notes:

1. If (X, Y ) is discrete, then integrals above are replaced by sums.

2. The same existence issues still remain; for example, for E[g(Y )|X = x] to exist, we
need

∫
R |g(y)|fY |X(y|x)dy <∞.
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Special case: If g(Y ) = Y and h(X) = X, then

E(Y |X = x) =

∫
R
yfY |X(y|x)dy

E(X|Y = y) =

∫
R
xfX|Y (x|y)dx.

These are called conditional means.

Important: Conditional expectations are always functions of the variable on which you are
conditioning. Furthermore, the use of notation for the conditioning variable is important in
describing whether a conditional expectation is a fixed quantity or a random variable.

E(Y |X = x) ←− function of x; fixed

E(Y |X) ←− function of X; random variable

E(X|Y = y) ←− function of y; fixed

E(X|Y ) ←− function of Y ; random variable

Example 4.10. In Example 4.9, we worked with the joint pdf

fX,Y (x, y) = e−yI(0 < x < y <∞)

and derived the conditional pdfs to be

fY |X(y|x) = e−(y−x)I(y > x)

fX|Y (x|y) =
1

y
I(0 < x < y).

The conditional mean of Y given X = x is

E(Y |X = x) =

∫
R
ye−(y−x)I(y > x)dy

=

∫ ∞
y=x

ye−(y−x)dy

u=y−x
=

∫ ∞
0

(u+ x)e−udu = E(U + x),

where U ∼ exponential(1); in the last integral, note that e−uI(u > 0) is the pdf of U ∼
exponential(1). Therefore,

E(Y |X = x) = E(U + x) = E(U) + x = 1 + x.

The conditional mean of X given Y = y is

E(X|Y = y) =

∫
R
x

1

y
I(0 < x < y)dx =

1

y

∫ y

x=0

x dx =
1

y

(
x2

2

∣∣∣∣y
x=0

)
=
y

2
.

This should not be surprising because X|{Y = y} ∼ U(0, y).
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Remark: We have just calculated E(Y |X = x) = 1 + x and E(X|Y = y) = y/2. These
are fixed. The versions E(Y |X) = 1 +X and E(X|Y ) = Y/2 are random. Because E(Y |X)
and E(X|Y ) are random variables, it makes sense to think about their distributions, their
means, their variances, their moment generating functions, etc.

Definition: Suppose (X, Y ) is a continuous random vector. For notational purposes, let

E(Y |X = x) = µY |X=x

E(X|Y = y) = µX|Y=y

denote the conditional means (viewed as fixed quantities; not random). The conditional
variance of Y given X = x is

var(Y |X = x) = E[(Y − µY |X=x)
2|X = x] =

∫
R
(y − µY |X=x)

2fY |X(y|x)dy.

Similarly, the conditional variance of X given Y = y is

var(X|Y = y) = E[(X − µX|Y=y)
2|Y = y] =

∫
R
(x− µX|Y=y)

2fX|Y (x|y)dx.

Note that var(Y |X = x) is a function of x and var(X|Y = y) is a function of y. If (X, Y ) is
discrete, then integrals are replaced by sums.

Computing Formulas (Conditional versions): Computing formulas for conditional vari-
ances are analogous to the unconditional versions:

var(Y |X = x) = E(Y 2|X = x)− [E(Y |X = x)]2

var(X|Y = y) = E(X2|Y = y)− [E(X|Y = y)]2.

Exercise: With the conditional distributions in Example 4.10, show that var(Y |X = x) = 1
and var(X|Y = y) = y2/12.

Remark: The following material (on conditional mgfs) is not covered in CB’s §4.2 but is
very useful. This material will be presented in other courses (e.g., STAT 714, etc.).

Definition: Suppose (X, Y ) is a continuous random vector. The conditional moment
generating function (mgf) of Y given X = x is

MY |X(t) = E(etY |X = x) =

∫
R
etyfY |X(y|x)dy.

Similarly, the conditional mgf of X given Y = y is

MX|Y (t) = E(etX |Y = y) =

∫
R
etxfX|Y (x|y)dx.

Notes:

1. If (X, Y ) is discrete, then integrals above are replaced by sums.
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2. As with unconditional mgfs, we need to require that the corresponding integrals (sums)
above are finite for t ∈ (−h, h) ∃h > 0. Otherwise, the mgfs do not exist.

3. Conditional mgfs enjoy all of the same properties that unconditional mgfs do (e.g.,
uniqueness, useful in generating moments−now, conditional moments).

Example 4.11. Suppose that (X, Y ) is a continuous random vector with joint pdf

fX,Y (x, y) =
e−x/ye−y

y
I(x > 0, y > 0).

In this example, we find the conditional mgf MX|Y (t). To do this, we need to find fX|Y (x|y),
the conditional pdf of X given Y = y. Recall that

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
,

so we need to first find fY (y), the marginal pdf of Y . For y > 0,

fY (y) =

∫
R

e−x/ye−y

y
I(x > 0, y > 0)dx = e−y

∫ ∞
x=0

1

y
e−x/ydx︸ ︷︷ ︸

= 1

= e−y.

Therefore, the conditional pdf of X given Y = y is

fX|Y (x|y) =

e−x/ye−y

y
I(x > 0, y > 0)

e−yI(y > 0)
=

1

y
e−x/yI(x > 0).

That is, X|{Y = y} ∼ exponential(y). Finally, the conditional mgf of X given Y = y is

MX|Y (t) = E(etX |Y = y) =

∫
R
etx

1

y
e−x/yI(x > 0)dx

=
1

1− yt
, for t <

1

y
.

Now, let’s illustrate how to use MX|Y (t) to “generate” conditional moments:

∂

∂t
MX|Y (t) = y(1− yt)−2 =⇒ E(X|Y = y) =

∂

∂t
MX|Y (t)

∣∣∣∣
t=0

= y

∂2

∂t2
MX|Y (t) = 2y2(1− yt)−3 =⇒ E(X2|Y = y) =

∂2

∂t2
MX|Y (t)

∣∣∣∣
t=0

= 2y2.

The conditional variance is therefore

var(X|Y = y) = E(X2|Y = y)− [E(X|Y = y)]2 = 2y2 − y2 = y2.

These results are expected because X|{Y = y} ∼ exponential(y).
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Definition: Let (X, Y ) be a random vector (discrete or continuous) with joint pmf/pdf
fX,Y (x, y). We say that X and Y are independent if

fX,Y (x, y) = fX(x)fY (y),

for all x, y ∈ R. In other words, the joint pmf/pdf equals the product of the marginal
pmfs/pdfs. The shorthand notation “X ⊥⊥ Y ” means “X and Y are independent.”

Observation: Suppose that X ⊥⊥ Y . The conditional pmf/pdf of Y given X = x is

fY |X(y|x) =
fX,Y (x, y)

fX(x)
X⊥⊥Y
=

fX(x)fY (y)

fX(x)
= fY (y).

Therefore, if X ⊥⊥ Y , then for any B ∈ B(R),

P (Y ∈ B|X = x) =

∫
B

fY |X(y|x)dy

=

∫
B

fY (y)dy = P (Y ∈ B).

In other words, knowledge that X = x does not influence how we assign probability to the
event {Y ∈ B}. Similarly, if X ⊥⊥ Y , then

fX|Y (x|y) = fX(x).

Lemma 4.2.7. Suppose (X, Y ) is a random vector with joint pmf/pdf fX,Y (x, y). The
random variables X and Y are independent if and only if there exists functions g(x) and
h(y) such that

fX,Y (x, y) = g(x)h(y),

for all x, y ∈ R.

Remarks:

1. The usefulness of Lemma 4.2.7 is that the functions g(x) and h(y) can be any functions
of x and y, respectively; they need not be valid pmfs/pdfs.

2. The factorization in Lemma 4.2.7 must hold for all x, y ∈ R. This means that if A,
the support of (X, Y ), involves a “constraint,” then X and Y cannot be independent.

• By “constraint,” I mean something like this:

A = {(x, y) ∈ R2 : 0 < x < y <∞}.

Note that the corresponding indicator function I(0 < x < y < ∞) cannot be
absorbed into g(x) or h(y).
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• Therefore, for Lemma 4.2.7 to be applicable, the support set A must be a Carte-
sian product of two sets, one that depends only on x and the other that depends
only on y. For example,

A = {(x, y) ∈ R2 : 0 < x < 1, 0 < y < 1} = {x ∈ R : x > 0} × {y ∈ R : y > 0}.

The corresponding indicator function I(0 < x < 1, 0 < y < 1) in this case can be
written as I(0 < x < 1)I(0 < y < 1).

Proof of Lemma 4.2.7: Proving the necessity (=⇒) is straightforward. Suppose that X ⊥⊥ Y ,
and take g(x) = fX(x) and h(y) = fY (y). Because

fX,Y (x, y)
X⊥⊥Y
= fX(x)fY (y) = g(x)h(y),

we have shown that there do exist functions g(x) and h(y) satisfying fX,Y (x, y) = g(x)h(y).
Proving the sufficiency (⇐=) is done as follows. Suppose that the factorization holds; i.e.,
suppose that fX,Y (x, y) = g(x)h(y), for all x, y ∈ R, for some functions g(x) and h(y). For
illustration, suppose that (X, Y ) is continuous. Let∫

R
g(x)dx = c and

∫
R
h(y)dy = d.

Note that

cd =

∫
R
g(x)dx

∫
R
h(y)dy =

∫
R

∫
R
g(x)h(y)dxdy =

∫ ∫
R2

fX,Y (x, y)dxdy = 1,

because the factorization fX,Y (x, y) = g(x)h(y) holds by assumption. Furthermore,

fX(x) =

∫
R
fX,Y (x, y)dy =

∫
R
g(x)h(y)dy = dg(x).

An analogous argument shows that fY (y) = ch(y). Therefore, for all x, y ∈ R, we have

fX,Y (x, y) = g(x)h(y)

= dg(x)ch(y) = fX(x)fY (y),

showing that X ⊥⊥ Y . For the discrete case, simply replace integrals with sums. 2

Example 4.12. Suppose that (X, Y ) is a continuous random vector with joint pdf

fX,Y (x, y) =
1

384
x2y4e−y−x/2I(x > 0, y > 0).

For all x, y ∈ R, note that we can write

fX,Y (x, y) =
1

384
x2e−x/2I(x > 0)︸ ︷︷ ︸

= g(x)

× y4e−yI(y > 0)︸ ︷︷ ︸
= h(y)

.

By Lemma 4.2.7, we have that X ⊥⊥ Y .
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Theorem 4.2.10. Suppose that X and Y are independent random variables.

(a) For all A,B ∈ B(R),

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B),

that is, {X ∈ A} and {Y ∈ B} are independent events.

(b) If g(x) is a function of x only and h(y) is a function of y only, then

E[g(X)h(Y )] = E[g(X)]E[h(Y )],

provided that all expectations exist.

Proof. We prove part (b) first because part (a) is a special case of part (b). Suppose (X, Y )
is continuous. By definition,

E[g(X)h(Y )] =

∫ ∫
R2

g(x)h(y)fX,Y (x, y)dxdy

X⊥⊥Y
=

∫ ∫
R2

g(x)h(y)fX(x)fY (y)dxdy

=

∫
R
g(x)fX(x)dx

∫
R
h(y)fY (y)dy = E[g(X)]E[h(Y )].

If (X, Y ) is discrete, simply replace integrals with sums. To prove part (a), suppose A,B ∈
B(R) and define

g(X) = I(X ∈ A)

h(Y ) = I(Y ∈ B).

Because the expectation of an indicator function is the probability of the set that it indicates
(see next remark), we have

E[g(X)h(Y )] = E[I(X ∈ A)I(Y ∈ B)]

= E[I(X ∈ A, Y ∈ B)]

= P (X ∈ A, Y ∈ B)

and

E[g(X)]E[h(Y )] = E[I(X ∈ A)]E[I(Y ∈ B)]

= P (X ∈ A)P (Y ∈ B).

Because A and B are arbitrary, the result follows. 2
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Remark: To see why expectations of indicator functions are probabilities, suppose that X
is a random variable on (S,B, P ) where, for all ω ∈ S,

X(ω) = IA(ω) ≡
{

1, X(ω) ∈ A
0, X(ω) /∈ A,

for A ∈ B(R). That is, X is a binary random variable and

E(X) = 1PX(X ∈ A) + 0PX(X /∈ A) = PX(X ∈ A).

Abusing notation, this is written simply as P (A).

Theorem 4.2.12. Suppose that X and Y are independent random variables with marginal
mgfs MX(t) and MY (t), respectively. The mgf of Z = X + Y is

MZ(t) = MX(t)MY (t).

That is, the mgf of the sum of two independent random variables is the product of the
marginal mgfs.
Proof. The mgf of Z is

MZ(t) = E(etZ) = E
[
et(X+Y )

]
= E(etXetY )

X⊥⊥Y
= E(etX)E(etY )

= MX(t)MY (t). 2

Remark: Theorem 4.2.12 is extremely useful. If X ⊥⊥ Y , then we can easily determine the
distribution of the sum Z = X + Y just by examining the mgf of Z.

Example 4.13. Suppose that X ∼ Poisson(λ1), Y ∼ Poisson(λ2), and X ⊥⊥ Y . The mgf
of Z = X + Y is

MZ(t) = MX(t)MY (t)

= eλ1(et−1)eλ2(et−1) = e(λ1+λ2)(et−1),

which we recognize as the mgf of a Poisson distribution with mean λ1 + λ2. Because mgfs
are unique, Z = X + Y ∼ Poisson(λ1 + λ2).

Remark: The following distributional results can also be established using the same argu-
ment as in Example 4.13. In each case, X ⊥⊥ Y .

1. X ∼ b(n1, p), Y ∼ b(n2, p) =⇒ Z = X + Y ∼ b(n1 + n2, p)

2. X ∼ nib(r1, p), Y ∼ nib(r2, p) =⇒ Z = X + Y ∼ nib(r1 + r2, p)

3. X ∼ N (µ1, σ
2
1), Y ∼ N (µ2, σ

2
2) =⇒ Z = X + Y ∼ N (µ1 + µ2, σ

2
1 + σ2

2)

4. X ∼ gamma(α1, β), Y ∼ gamma(α2, β) =⇒ Z = X + Y ∼ gamma(α1 + α2, β)
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Note: We finish this section with an example, three results, and a remark.

Example 4.14. Suppose that X1 ∼ Poisson(λ1), X2 ∼ Poisson(λ2), and X1 ⊥⊥ X2. Find
the conditional distribution of X1 given Z = X1 +X2 = n, for n ≥ 1.
Solution. The conditional pmf of X1 given Z = n is, for x1 = 0, 1, 2, ..., n,

fX1|Z(x1|n) =
fX1,Z(x1, n)

fZ(n)
=

P (X1 = x1, Z = n)

P (Z = n)

=
P (X1 = x1, X2 = n− x1)

P (Z = n)

X1⊥⊥X2=
P (X1 = x1)P (X2 = n− x1)

P (Z = n)

=

λx11 e
−λ1

x1!

λn−x12 e−λ2

(n− x1)!

(λ1 + λ2)ne−(λ1+λ2)

n!

=
n!

x1!(n− x1)!

(
λ1

λ1 + λ2

)x1 ( λ2

λ1 + λ2

)n−x1
=

(
n

x1

)(
λ1

λ1 + λ2

)x1 (
1− λ1

λ1 + λ2

)n−x1
.

That is, X1|{X1 +X2 = n} ∼ b(n, p), where p = λ1/(λ1 + λ2).

Result: Suppose that (X, Y ) is a random vector (discrete or continuous) with joint cdf
FX,Y (x, y). Then X and Y are independent if and only if

FX,Y (x, y) = FX(x)FY (y),

for all x, y ∈ R, where FX(x) and FY (y) are the marginal cdfs of X and Y , respectively.
Proof. Exercise.

Result: Suppose that (X, Y ) is a random vector (discrete or continuous) with joint mgf
MX,Y (t1, t2). Then X and Y are independent if and only if

MX,Y (t1, t2) = MX(t1)MY (t2),

for all values of t1, t2 ∈ R where these mgfs exist.
Proof. Exercise.

Result: If X and Y are independent then so are U = g(X) and V = h(Y ). That is,
functions of independent random variables are also independent.
Proof. We will prove this in the next section (Theorem 4.3.5).

Remark: The first result above (dealing with cdfs) might be a better characterization
of independence than what we stated initially using pmfs/pdfs; i.e., that X and Y are
independent if and only if

fX,Y (x, y) = fX(x)fY (y),
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for all x, y ∈ R. The reason for this is that fX,Y (x, y) = fX(x)fY (y) may not hold on a set
A ⊂ R2 where P ((X, Y ) ∈ A) = 0, yet, X and Y remain independent (see pp 156 CB). In
this light, it might be better to say that X and Y are independent if and only

fX,Y (x, y) = fX(x)fY (y),

for “almost all” x, y ∈ R, acknowledging that this may not be true on a set of measure zero.

4.3 Bivariate Transformations

Setting: Suppose (X, Y ) is a random vector with joint pmf/pdf fX,Y (x, y) and support
A ⊆ R2. Define the random variables

U = g1(X, Y )

V = g2(X, Y ),

where gi : R2 → R, for i = 1, 2. We would like to find the joint pmf/pdf of the random
vector (U, V ).

Note: From first principles, there is nothing to prevent us from deriving the cdf of (U, V ).
In the continuous case,

FU,V (u, v) = P (U ≤ u, V ≤ v)

= P (g1(X, Y ) ≤ u, g2(X, Y ) ≤ v)

=

∫ ∫
B

fX,Y (x, y)dxdy,

where the set B = {(x, y) ∈ A : g1(x, y) ≤ u, g2(x, y) ≤ v}. With this, one could calculate
the joint pdf by

fU,V (u, v) =
∂2FU,V (u, v)

∂u∂v
.

Discrete case: If (X, Y ) is discrete, we can calculate the joint pmf of (U, V ) directly. By
definition,

fU,V (u, v) = P (U = u, V = v)

= P (g1(X, Y ) = u, g2(X, Y ) = v)

=
∑∑
(x,y)∈Auv

fX,Y (x, y),

where the set Auv = {(x, y) ∈ A : g1(x, y) = u, g2(x, y) = v}.

Notation: To match the notation of CB, we denote by

A = support of (X, Y )

B = support of (U, V ).
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Note that
B = {(u, v) ∈ R2 : u = g1(x, y), v = g2(x, y), for (x, y) ∈ A}.

The vector-valued function g : R2 → R2 satisfying(
U
V

)
= g

(
X
Y

)
=

(
g1(X, Y )
g2(X, Y )

)
is a mapping from A to B; i.e., g : A → B.

Example 4.15. Suppose that X ∼ b(n1, p), Y ∼ b(n2, p), and X ⊥⊥ Y . Define

U = g1(X, Y ) = X + Y

V = g2(X, Y ) = Y.

(a) Find fU,V (u, v), the joint pmf of (U, V ), using a bivariate transformation.
(b) Find fU(u), the marginal pmf of U .
Solution. The joint pmf of (X, Y ) is

fX,Y (x, y)
X⊥⊥Y
= fX(x)fY (y)

=

(
n1

x

)
px(1− p)n1−x

(
n2

y

)
py(1− p)n2−y,

for values (x, y) ∈ A, where

A = {(x, y) : x = 0, 1, 2, ..., n1; y = 0, 1, 2, ..., n2}.

The support of (U, V ) is

B = {(u, v) ∈ R2 : u = x+ y, v = y, for (x, y) ∈ A}
= {(u, v) ∈ R2 : u = 0, 1, 2, ..., n1 + n2, v = 0, 1, 2, ..., n2, v ≤ u};

note that necessarily v ≤ u because x ≥ 0. Now, the joint pmf of (U, V ) equals

fU,V (u, v) =
∑∑
(x,y)∈Auv

fX,Y (x, y),

where the set Auv = {(x, y) ∈ A : x + y = u, y = v}. In this case, the set Auv consists of
just one point, the singleton {(u− v, v)}. To see why this is true, note that the system

u = g1(x, y) = x+ y

v = g2(x, y) = y

has only one (unique) solution

x = g−1
1 (u, v) = u− v

y = g−1
2 (u, v) = v.
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Therefore, the joint pmf of (U, V ), for values of (u, v) ∈ B, is given by

fU,V (u, v) =
∑∑
(x,y)∈Auv

fX,Y (x, y)

=

(
n1

u− v

)
pu−v(1− p)n1−(u−v)

(
n2

v

)
pv(1− p)n2−v

=

(
n1

u− v

)(
n2

v

)
pu(1− p)n1+n2−u.

This completes part (a). To do part (b), the marginal pmf fU(u) is found by summing
fU,V (u, v) over values of v ∈ B, that is, v = 0, 1, 2, ..., u. For u = 0, 1, 2, ..., n1 + n2, we have

fU(u) =
u∑
v=0

(
n1

u− v

)(
n2

v

)
pu(1− p)n1+n2−u

= pu(1− p)n1+n2−u
u∑
v=0

(
n1

u− v

)(
n2

v

)
.

It can be shown that
u∑
v=0

(
n1

u− v

)(
n2

v

)
=

(
n1 + n2

u

)
;

this is known as Vandermonde’s Identity. Therefore,

fU(u) =

(
n1 + n2

u

)
pu(1− p)n1+n2−u,

for u = 0, 1, 2, ..., n1 + n2, showing that U = X + Y ∼ b(n1 + n2, p).

Remark: Had we only been interested in finding the distribution of U = X + Y in this
example, note that an mgf argument would have been much easier. The mgf of U is

MU(t)
X⊥⊥Y
= MX(t)MY (t) = (q + pet)n1(q + pet)n2 = (q + pet)n1+n2 ,

which we recognize as the b(n1 + n2, p) mgf. The result follows because mgfs are unique.

Continuous case: Suppose (X, Y ) is a continuous random vector with joint pdf fX,Y (x, y)
and support A ⊆ R2. Define

U = g1(X, Y )

V = g2(X, Y )

so that (
U
V

)
= g

(
X
Y

)
=

(
g1(X, Y )
g2(X, Y )

)
is a vector-valued mapping from A to B ⊆ R2, where

B = {(u, v) ∈ R2 : u = g1(x, y), v = g2(x, y), for (x, y) ∈ A};
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i.e., g : A → B. In what follows, we will assume that g is a one-to-one transformation. That
is, for each (u, v) ∈ B, there is only one (x, y) ∈ A satisfying

u = g1(x, y)

v = g2(x, y).

Because g is one-to-one, we can find the inverse transformation

x = g−1
1 (u, v)

y = g−1
2 (u, v).

The Jacobian of the (inverse) transformation is defined as

J = det

∣∣∣∣∣∣∣
∂g−1

1 (u, v)

∂u

∂g−1
1 (u, v)

∂v
∂g−1

2 (u, v)

∂u

∂g−1
2 (u, v)

∂v

∣∣∣∣∣∣∣ ,
that is, J is the determinant of this 2× 2 matrix of partial derivatives. We will assume that
J 6= 0 over B. By a theorem in analysis (the Change of Variables Theorem), we are able to
conclude that the joint pdf of (U, V ) is, for (u, v) ∈ B,

fU,V (u, v) = fX,Y (g−1
1 (u, v), g−1

2 (u, v))|J |,

where |J | denotes the absolute value of J . Of course, if (u, v) /∈ B, then fU,V (u, v) = 0.

Discussion: Let A ⊆ A and B = g(A) ⊆ B; i.e., g(A) is the image of A under the mapping
g. Because g : A → B is one-to-one, the events {(X, Y ) ∈ A} and {(U, V ) ∈ B} have the
same probability; i.e.,

P ((U, V ) ∈ B) = P ((X, Y ) ∈ A) =

∫ ∫
A

fX,Y (x, y)dxdy.

The Change of Variables Theorem from analysis says that∫ ∫
A

fX,Y (x, y)dxdy =

∫ ∫
B

fX,Y (g−1
1 (u, v), g−1

2 (u, v))|J |dudv.

Therefore, for any B ⊆ B, we have

P ((U, V ) ∈ B) =

∫ ∫
B

fX,Y (g−1
1 (u, v), g−1

2 (u, v))|J |dudv.

This implies that the joint pdf of (U, V ), where positive, is

fU,V (u, v) = fX,Y (g−1
1 (u, v), g−1

2 (u, v))|J |.
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Example 4.16. Suppose that X ∼ gamma(α1, β), Y ∼ gamma(α2, β), and X ⊥⊥ Y . Define

U = g1(X, Y ) = X + Y

V = g2(X, Y ) =
X

X + Y
.

(a) Find fU,V (u, v), the joint pdf of (U, V ), using a bivariate transformation.
(b) Find fU(u), the marginal pdf of U .
(c) Find fV (v), the marginal pdf of V .
Solution. First, note that the joint pdf of (X, Y ) is

fX,Y (x, y)
X⊥⊥Y
= fX(x)fY (y)

=
1

Γ(α1)βα1
xα1−1e−x/βI(x > 0)× 1

Γ(α2)βα2
yα2−1e−y/βI(y > 0)

=
1

Γ(α1)Γ(α2)βα1+α2
xα1−1yα2−1e−(x+y)/βI(x > 0, y > 0),

and the support of (X, Y ) is

A = {(x, y) ∈ R2 : x > 0, y > 0}.

The transformation above maps values of (x, y) ∈ A to

B = {(u, v) ∈ R2 : u > 0, 0 < v < 1};

i.e., B is the support of (U, V ). To verify the transformation is one-to-one, we show that
g(x, y) = g(x∗, y∗) ∈ B =⇒ x = x∗ and y = y∗, where

g

(
x
y

)
=

(
g1(x, y)
g2(x, y)

)
=

(
x+ y
x

x+ y

)
.

Suppose g(x, y) = g(x∗, y∗). This means that both of these equations hold:

x+ y = x∗ + y∗ and
x

x+ y
=

x∗

x∗ + y∗
.

The two equations together imply that x = x∗. The first equation then implies y = y∗.
Hence, the transformation g : A → B is one-to-one. The inverse transformation is found by
solving

u = x+ y

v =
x

x+ y

for x = g−1
1 (u, v) and y = g−1

2 (u, v). Straightforward algebra shows that(
x
y

)
= g−1

(
u
v

)
=

(
g−1

1 (u, v)
g−1

2 (u, v)

)
=

(
uv

u(1− v)

)
.
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The Jacobian is

J = det

∣∣∣∣∣∣∣
∂g−1

1 (u, v)

∂u

∂g−1
1 (u, v)

∂v
∂g−1

2 (u, v)

∂u

∂g−1
2 (u, v)

∂v

∣∣∣∣∣∣∣ = det

∣∣∣∣ v u
1− v −u

∣∣∣∣ = −uv − u(1− v) = −u,

which is nonzero over B. Therefore, the joint pdf of (U, V ) is, for u > 0 and 0 < v < 1,

fU,V (u, v) = fX,Y (g−1
1 (u, v), g−1

2 (u, v))|J |
= fX,Y (uv, u(1− v))| − u|

=
1

Γ(α1)Γ(α2)βα1+α2
(uv)α1−1[u(1− v)]α2−1e−[uv+u(1−v)]/β

=
1

Γ(α1)Γ(α2)βα1+α2
uα1+α2−1vα1−1(1− v)α2−1e−u/β.

This completes part (a). To find the marginal pdf of U in part (b), we integrate fU,V (u, v)
over 0 < v < 1; that is,

fU(u)
u>0
=

∫ 1

v=0

1

Γ(α1)Γ(α2)βα1+α2
uα1+α2−1vα1−1(1− v)α2−1e−u/βdv

=
uα1+α2−1e−u/β

Γ(α1)Γ(α2)βα1+α2

∫ 1

v=0

vα1−1(1− v)α2−1dv︸ ︷︷ ︸
= B(α1,α2)

=
uα1+α2−1e−u/β

Γ(α1)Γ(α2)βα1+α2

Γ(α1)Γ(α2)

Γ(α1 + α2)

=
1

Γ(α1 + α2)βα1+α2
uα1+α2−1e−u/βI(u > 0),

which we recognize as a gamma pdf with shape parameter α1 + α2 and scale parameter β.
That is, U = X + Y ∼ gamma(α1 + α2, β). This completes part (b).

Remark: Had we only been interested in finding the distribution of U = X + Y in this
example, note that an mgf argument would have been much easier. The mgf of U is

MU(t)
X⊥⊥Y
= MX(t)MY (t) =

(
1

1− βt

)α1
(

1

1− βt

)α2

=

(
1

1− βt

)α1+α2

,

for t < 1/β, which we recognize as the gamma(α1 + α2, β) mgf. The result follows because
mgfs are unique.

Finally, in part (c), to find the marginal pdf of V , we integrate fU,V (u, v) over u > 0; that is,

fV (v)
0<v<1

=

∫ ∞
u=0

1

Γ(α1)Γ(α2)βα1+α2
uα1+α2−1vα1−1(1− v)α2−1e−u/βdu

=
vα1−1(1− v)α2−1

Γ(α1)Γ(α2)βα1+α2

∫ ∞
u=0

uα1+α2−1e−u/βdu︸ ︷︷ ︸
= Γ(α1+α2)βα1+α2

=
Γ(α1 + α2)

Γ(α1)Γ(α2)
vα1−1(1− v)α2−1I(0 < v < 1),
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which we recognize as a beta pdf with parameters α1 and α2. That is, V = X/(X + Y ) ∼
beta(α1, α2). This completes part (c).

Remark: In addition to deriving the marginal distributions in this example, that is,

U = X + Y ∼ gamma(α1 + α2, β)

V =
X

X + Y
∼ beta(α1, α2),

note that U and V are also independent. We know this because we can write the joint pdf

fU,V (u, v) =
1

Γ(α1)Γ(α2)βα1+α2
uα1+α2−1vα1−1(1− v)α2−1e−u/βI(u > 0, 0 < v < 1)

=
uα1+α2−1e−u/βI(u > 0)

Γ(α1)Γ(α2)βα1+α2︸ ︷︷ ︸
= g(u)

× vα1−1(1− v)α2−1I(0 < v < 1)︸ ︷︷ ︸
= h(v)

.

We have factored the joint pdf fU,V (u, v) into two expressions, one of which depends only
on u and the other which depends only on v. From Lemma 4.2.7, we know that U ⊥⊥ V .
We could have also concluded this by noting that fU,V (u, v) = fU(u)fV (v) for all (u, v) ∈ B.
Clearly, g(u) and h(v) above are proportional to fU(u) and fV (v), respectively.

Remark: We now illustrate the utility of the bivariate transformation technique in a situ-
ation where only one function of X and Y is of interest.

Example 4.17. Suppose that X ∼ N (0, 1), Y ∼ N (0, 1), and X ⊥⊥ Y . Find the distribu-
tion of X/Y .
Solution. First, note that the joint pdf of (X, Y ) is

fX,Y (x, y)
X⊥⊥Y
= fX(x)fY (y)

=
1√
2π
e−x

2/2 1√
2π
e−y

2/2

=
1

2π
e−(x2+y2)/2,

for all (x, y) ∈ R2; i.e., the support of (X, Y ) is A = R2. We initially have an obvious
problem; the transformation

U = g1(X, Y ) =
X

Y
,

by itself, is not one-to-one; e.g., g1(1, 1) = g1(2, 2) = 1. A second problem is that the
transformation U = X/Y is not defined when y = 0. We deal with the second problem first.
We do this by redefining the joint pdf as

fX,Y (x, y) =
1

2π
e−(x2+y2)/2,

but only for those values of (x, y) ∈ A∗, where

A∗ = {(x, y) ∈ R2 : x ∈ R, y ∈ R− {0}}.
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The joint pdf fX,Y (x, y) over A and the one over A∗ define the same probability distribution
for (X, Y ) because P (A\A∗) = 0; see also pp 156 (CB). Now, to “make” the transformation
one-to-one, we define a second variable V = g2(X, Y ) and augment g1(X, Y ) with it; i.e.,(

U
V

)
= g

(
X
Y

)
=

(
g1(X, Y )
g2(X, Y )

)
.

We want to choose V = g2(X, Y ) to be something “easy” and also so that g : A∗ → B∗, say,
is one-to-one. Consider adding V = g2(X, Y ) = Y so that the transformation is

U = g1(X, Y ) =
X

Y
V = g2(X, Y ) = Y.

Clearly, g is one-to-one; i.e., g(x, y) = g(x∗, y∗) implies that x = x∗ and y = y∗. The support
of (U, V ) is

B∗ = {(u, v) ∈ R2 : u ∈ R, v ∈ R− {0}}.

The inverse transformation is found by solving

u =
x

y
v = y

for x = g−1
1 (u, v) and y = g−1

2 (u, v). Straightforward algebra shows that(
x
y

)
= g−1

(
u
v

)
=

(
g−1

1 (u, v)
g−1

2 (u, v)

)
=

(
uv
v

)
.

The Jacobian is

J = det

∣∣∣∣∣∣∣
∂g−1

1 (u, v)

∂u

∂g−1
1 (u, v)

∂v
∂g−1

2 (u, v)

∂u

∂g−1
2 (u, v)

∂v

∣∣∣∣∣∣∣ = det

∣∣∣∣ v u
0 1

∣∣∣∣ = v(1)− u(0) = v,

which is nonzero over B∗. Therefore, the joint pdf of (U, V ), for (u, v) ∈ B∗, is given by

fU,V (u, v) = fX,Y (g−1
1 (u, v), g−1

2 (u, v))|J |
= fX,Y (uv, v)|v|

=
|v|
2π
e−[(uv)2+v2]/2

=
|v|
2π
e
−v2/2

(
1

1+u2

)
.

Remark: If we let B = R2, then the joint pdf fU,V (u, v) over B and the one over B∗ (as
shown above) define the same probability distribution for (U, V ) because P (B \ B∗) = 0.
Therefore, in what follows, we can work with fU,V (u, v) defined over B instead.
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Recall that our original goal was to find the distribution of U = X/Y . The pdf of U , for
−∞ < u <∞, is given by

fU(u) =

∫ ∞
−∞

fU,V (u, v)dv

=

∫ ∞
−∞

|v|
2π
e
−v2/2

(
1

1+u2

)
dv.

To do this integral, let σ2 = 1/(1 + u2) and write

fU(u) =

∫ ∞
−∞

|v|
2π
e
−v2/2

(
1

1+u2

)
dv =

1

2π

∫ ∞
−∞
|v|e−v2/2σ2︸ ︷︷ ︸
= h(v), say

dv.

Note that h(v) is an even function; i.e., h(v) = h(−v), for all v ∈ R. This means that h(v)
is symmetric about v = 0. Therefore, the last integral∫ ∞

−∞
|v|e−v2/2σ2

dv = 2

∫ ∞
0

ve−v
2/2σ2

dv.

Therefore, for −∞ < u <∞,

fU(u) =
1

2π
2

∫ ∞
0

ve−v
2/2σ2

dv

=
1

π

(
−σ2e−v

2/2σ2

∣∣∣∣∞
v=0

)
=
σ2

π
(1− 0) =

1

π(1 + u2)
,

which we recognize as the pdf of U ∼ Cauchy(0, 1). We have shown that the ratio of two
independent standard normal random variables follows a Cauchy distribution (specifically, a
“standard” Cauchy distribution).

Remark: Compare our solution to Example 4.17 with the solution provided by CB (pp
162). The authors augmented the g1(X, Y ) = X/Y transformation with g2(X, Y ) = |Y |
instead of with g2(X, Y ) = Y as we did. Their transformation is not one-to-one, so they
“break up” A into disjoint regions over which, individually, the transformation is one-to-one;
they then apply the transformation separately over these regions.

Theorem 4.3.5. Suppose that X and Y are independent random variables (discrete or
continuous). The random variables U = g(X) and V = h(Y ) are also independent.

Remark: Theorem 4.3.5 says that functions of independent random variables are themselves
independent. In the statement above, it is assumed that g is a function of X only; similarly,
h is a function of Y only.

Proof. Assume that X and Y are jointly continuous. For any u, v ∈ R, define the sets

Au = {x ∈ R : g(x) ≤ u}
Bv = {y ∈ R : h(y) ≤ v}.
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The joint cdf of (U, V ) is

FU,V (u, v) = P (U ≤ u, V ≤ v)

= P (X ∈ Au, Y ∈ Bv)
X⊥⊥Y
= P (X ∈ Au)P (Y ∈ Bv),

the last step following from Theorem 4.2.10(a). Therefore, the joint pdf of (U, V ) is

fU,V (u, v) =
∂2

∂u∂v
FU,V (u, v)

=
∂2

∂u∂v
P (X ∈ Au)P (Y ∈ Bv)

=
d

du
P (X ∈ Au)︸ ︷︷ ︸

function of u

d

dv
P (Y ∈ Av)︸ ︷︷ ︸

function of v

.

By Lemma 4.2.7, U and V are independent. 2

4.4 Hierarchical Models and Mixture Distributions

Example 4.18. Suppose X ∼ b(n, p). As a frame of reference, suppose that

X = number of germinating seeds per plot (out of n seeds).

A generalization of this model would allow p, the probability of “success,” to have its own
probability distribution. Suppose that

X|P ∼ b(n, P )

P ∼ beta(α, β),

where n is fixed and α, β > 0. The model in the second layer P ∼ beta(α, β) acknowledges
that the probability of success varies across plots.

Example 4.19. Consider the hierarchy

X|N ∼ b(N, p)

N ∼ Poisson(λ),

where p is fixed and λ > 0. As a frame of reference, suppose N is the number of eggs laid
(random) and X is the number of surviving offspring. This model would be applicable if
each offspring’s survival status (yes/no) is independent and p = pr(“offspring survives”) is
the same for each egg.

Remark: The models in Example 4.18 and 4.19 are called hierarchical models.
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Example 4.18 (continued). In the binomial-beta hierarchy, we now find fX(x), the marginal
distribution of X.
Solution. Note that x ∈ {0, 1, 2, ..., n} and 0 < p < 1. The joint distribution of X and P is

fX,P (x, p) = fX|P (x|p)fP (p)

=

(
n

x

)
px(1− p)n−x Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1

=

(
n

x

)
Γ(α + β)

Γ(α)Γ(β)
px+α−1(1− p)n−x+β−1.

Therefore, the marginal pmf of X, for x = 0, 1, 2, ..., n, is given by

fX(x) =

∫ 1

0

fX|P (x|p)fP (p)dp

=

∫ 1

0

(
n

x

)
Γ(α + β)

Γ(α)Γ(β)
px+α−1(1− p)n−x+β−1dp

=

(
n

x

)
Γ(α + β)

Γ(α)Γ(β)

∫ 1

0

px+α−1(1− p)n−x+β−1dp

=

(
n

x

)
Γ(α + β)

Γ(α)Γ(β)

Γ(x+ α)Γ(n− x+ β)

Γ(α + β + n)
.

This is called the beta-binomial distribution. We write X ∼ beta-binomial(n, α, β).

Q: If X ∼ beta-binomial(n, α, β), what are E(X) and var(X)?
A: From the definition,

E(X) =
n∑
x=0

xfX(x)

=
n∑
x=0

x

(
n

x

)
Γ(α + β)

Γ(α)Γ(β)

Γ(x+ α)Γ(n− x+ β)

Γ(α + β + n)
.

Clearly, this is not a friendly calculation. Unfortunately, E(X2) and E(etX) are even less
friendly.

Theorem 4.4.3. If X and Y are any two random variables, then

E(X) = E[E(X|Y )],

provided that all expectations exist.

Remark: The result in Theorem 4.4.3 is called the iterated rule for expectations. Before
we prove this result, it is important to note that there are really three different expectations
here:

E(X) −→ refers to the marginal distribution of X

E(X|Y ) −→ refers to the conditional distribution of X|Y
E[E(X|Y )] −→ calculated using the marginal distribution of Y .
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Recall that E(X|Y ) is a function of Y , say g(Y ).

Proof. Suppose (X, Y ) is continuous with joint pdf fX,Y (x, y). The LHS is

E(X) =

∫ ∫
R2

xfX,Y (x, y)dxdy

=

∫
R

∫
R
xfX|Y (x|y)fY (y)dxdy

=

∫
R

[∫
R
xfX|Y (x|y)dx

]
︸ ︷︷ ︸

E(X|Y=y)

fY (y)dy

=

∫
R
E(X|Y = y)fY (y)dy = E[E(X|Y )].

The discrete case is proven by replacing integrals with sums. 2

Illustration: Let’s return to our binomial-beta hierarchy in Example 4.18, that is,

X|P ∼ b(n, P )

P ∼ beta(α, β).

The mean of X is

E(X) = E[E(X|P )] = E(nP ) = nE(P ) = n

(
α

α + β

)
.

Remark: This example illustrates an important lesson when finding expected values. In
some problems, it is difficult to calculate E(X) directly (i.e., using the marginal distribution
of X). By judicious use of conditioning, the calculation becomes much easier.

Definition: A random variable X has a mixture distribution if the distribution of X
depends on a quantity that also has a distribution.

Remark: We can classify the beta-binomial distribution as a mixture distribution because
it arises from the hierarchy

X|P ∼ b(n, P )

P ∼ beta(α, β).

In general, we can write the beta-binomial pmf as

fX(x) =

∫ 1

0

fX|P (x|p)fP (p)dp;

i.e., fX(x) can be thought of as an “average” of values of fX|P (x|p). The pdf fP (p) is called
a mixing distribution. In the Example 4.19 hierarchy

X|N ∼ b(N, p)

N ∼ Poisson(λ),
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Casella and Berger (pp 163) show that, for x = 0, 1, 2, ...,

fX(x) =
∞∑
n=0

fX|N(x|n)fN(n)

n>x
=

∞∑
n=x

(
n

x

)
px(1− p)n−x λ

ne−λ

n!

=
(λp)xe−λp

x!
.

In this example, the Poisson pmf fN(n) is the mixing distribution and, marginally, X ∼
Poisson(λp). Note that λp = E(X) = E[E(X|N)].

Example 4.20. Non-central χ2 distribution. Consider the hierarchy

X|Y ∼ χ2
p+2Y

Y ∼ Poisson(λ),

where p > 0 and λ > 0. The conditional pdf of X given Y = y is

fX|Y (x|y) =
1

Γ(p
2

+ y)2
p
2

+y
x
p
2

+y−1e−x/2I(x > 0).

Therefore, the marginal pdf of X, for x > 0, is given by

fX(x) =
∞∑
y=0

fX,Y (x, y) =
∞∑
y=0

fX|Y (x|y)fY (y)

=
∞∑
y=0

1

Γ(p
2

+ y)2
p
2

+y
x
p
2

+y−1e−x/2
(
λye−λ

y!

)
.

This is called the non-central χ2 distribution with p degrees of freedom and non-centrality
parameter λ > 0, written X ∼ χ2

p(λ). The non-central χ2 distribution can be thought of as
a mixture distribution; it is essentially an infinite weighted average of (central) χ2 densities
where the mixing distribution is Poisson(λ). If λ = 0, the non-central χ2

p(λ) distribution
reduces to our “usual” central χ2

p distribution.

Note: To find E(X), we could calculate

E(X) =

∫ ∞
0

xfX(x)dx =

∫ ∞
0

x

∞∑
y=0

1

Γ(p
2

+ y)2
p
2

+y
x
p
2

+y−1e−x/2
(
λye−λ

y!

)
dx.

Alternatively, we could simply calculate

E(X) = E[E(X|Y )] = E(p+ 2Y ) = p+ 2λ

using the iterated rule for expectations.
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Theorem 4.4.7. If X and Y are any two random variables, then

var(X) = E[var(X|Y )] + var[E(X|Y )],

provided that all expectations exist.

Remark: The result in Theorem 4.4.7 is called the iterated rule for variances. It is also
known (informally) as “Adam’s Rule.”

Proof. First, note that

E[var(X|Y )] = E{E(X2|Y )− [E(X|Y )]2}
= E[E(X2|Y )]− E{[E(X|Y )]2}
= E(X2)− E{[E(X|Y )]2}.

Second, note that

var[E(X|Y )] = E{[E(X|Y )]2} − {E[E(X|Y )]}2

= E{[E(X|Y )]2} − [E(X)]2.

Combining these two equations completes the proof. 2

Example 4.21. Calculate var(X) if X ∼ χ2
p(λ).

Solution. Use the fact that X is a mixture random variable arising from the hierarchy

X|Y ∼ χ2
p+2Y

Y ∼ Poisson(λ).

Note that

E[var(X|Y )] = E[2(p+ 2Y )] = 2p+ 4λ

var[E(X|Y )] = var(p+ 2Y ) = 4λ.

Therefore,

var(X) = E[var(X|Y )] + var[E(X|Y )]

= 2p+ 4λ+ 4λ

= 2p+ 8λ.

Example 4.22. Find the moment generating function of X ∼ χ2
p(λ).

Solution. We again exploit the hierarchy

X|Y ∼ χ2
p+2Y

Y ∼ Poisson(λ).

The mgf of X is given by

MX(t) = E(etX) = E[E(etX |Y )].
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Because X|Y ∼ χ2
p+2Y , we know that

E(etX |Y ) =

(
1

1− 2t

) p
2

+Y

, for t <
1

2
.

Note that this is the (conditional) mgf of X given Y . Therefore,

MX(t) = E[E(etX |Y )] = E

[(
1

1− 2t

) p
2

+Y
]
.

The last expectation is an expectation taken with respect to the marginal distribution of Y .
Because Y ∼ Poisson(λ), we have

MX(t) = E

[(
1

1− 2t

) p
2

+Y
]

=
∞∑
y=0

(
1

1− 2t

) p
2

+y
λye−λ

y!

= e−λ
(

1

1− 2t

)p/2 ∞∑
y=0

(
λ

1−2t

)y
y!︸ ︷︷ ︸

= exp( λ
1−2t)

=

(
1

1− 2t

)p/2
exp

(
2λt

1− 2t

)
.

This is the mgf of X ∼ χ2
p(λ), valid for t < 1/2.

Exercise: If X ∼ N (µ, 1), show that Y = X2 ∼ χ2
1(λ), where λ = µ2/2. Hint: Derive the

mgf of Y .

4.5 Covariance and Correlation

Setting: We have two random variables X and Y with finite means and variances. Denote
by

E(X) = µX var(X) = σ2
X <∞

E(Y ) = µY var(Y ) = σ2
Y <∞.

Definitions: The covariance of X and Y is

cov(X, Y ) ≡ σXY = E[(X − µX)(Y − µY )].

The correlation of X and Y is

corr(X, Y ) ≡ ρXY =
cov(X, Y )

σXσY
.
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Notes:

1. Both σXY and ρXY are real numbers. Specifically,

−∞ < σXY <∞

and
−1 ≤ ρXY ≤ 1.

2. Both σXY and ρXY describe the strength and direction of the linear relationship
between X and Y . Values of ρXY = ±1 indicate a perfect linear relationship.

Theorem 4.5.3. For any two random variables X and Y ,

cov(X, Y ) = E(XY )− E(X)E(Y ).

This is called the covariance computing formula.
Proof. From the definition,

cov(X, Y ) = E[(X − µX)(Y − µY )]

= E(XY − µXY − µYX + µXµY )

= E(XY )− µXµY − µXµY + µXµY

= E(XY )− µXµY . 2

Discoveries: It is easy to establish each of the following results:

1. cov(X, Y ) = cov(Y,X)

2. cov(X,X) = var(X)

3. cov(a,X) = 0, for any constant a ∈ R.

Theorem 4.5.5. If X ⊥⊥ Y , then cov(X, Y ) = 0.
Proof. If X ⊥⊥ Y , then E(XY ) = E(X)E(Y ) by Theorem 4.2.10(b). 2

Remark: The converse of Theorem 4.5.5 is not true in general. That is,

cov(X, Y ) = 0 6=⇒ X ⊥⊥ Y.

Counterexample: X ∼ N (0, 1) and Y = X2. Note that

E(XY ) = E(X3) = E[(X − 0)3],

which is the numerator of ξ, the skewness of X. Because the normal pdf is symmetric,
ξ = 0. Therefore, E(XY ) = E(X3) = 0. Also, E(X) = 0 and E(Y ) = 1, so cov(X, Y ) = 0.
However, clearly X and Y are not independent. They are perfectly related (just not linearly).
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Theorem 4.5.6. If X and Y are any two random variables and a and b are constants, then

var(aX + bY ) = a2var(X) + b2var(Y ) + 2ab cov(X, Y ).

Proof. Apply the variance computing formula var(W ) = E(W 2) − [E(W )]2, with W =
aX + bY . 2

Note: The following are commonly-seen special cases of Theorem 4.5.6:

• a = b = 1:
var(X + Y ) = var(X) + var(Y ) + 2cov(X, Y )

• a = 1, b = −1:
var(X − Y ) = var(X) + var(Y )− 2cov(X, Y )

• X ⊥⊥ Y , a = 1, b = ±1:

var(X ± Y ) = var(X) + var(Y ).

Theorem 4.5.7. For any two random variables X and Y ,
(a) −1 ≤ ρXY ≤ 1
(b) |ρXY | = 1 if and only if there exists constants a, b ∈ R, a 6= 0, such that

P (Y = aX + b) = 1;

i.e., Y = aX + b with probability 1 (“almost surely”).
Proof. Define the function

h(t) = E{[(X − µX)t+ (Y − µY )]2}.

Note first that h(t) ≥ 0 for all t ∈ R. Expanding the square and taking expectations,

h(t) = σ2
Xt

2 + 2cov(X, Y )t+ σ2
Y ,

a quadratic function of t. Because non-negative quadratic functions can have at most one
real root, the discriminant of h(t); i.e., [2cov(X, Y )]2 − 4σ2

Xσ
2
Y ≤ 0. However, note that

[2cov(X, Y )]2 − 4σ2
Xσ

2
Y ≤ 0 ⇐⇒ [cov(X, Y )]2 ≤ σ2

Xσ
2
Y (4.1)

⇐⇒ −σXσY ≤ cov(X, Y ) ≤ σXσY .

Dividing through by σXσY gives

−1 ≤ cov(X, Y )

σXσY
≤ 1,

establishing part (a). To prove part (b), note that

|ρXY | = 1 ⇐⇒ |cov(X, Y )| = σXσY

⇐⇒ [cov(X, Y )]2 = σ2
Xσ

2
Y

⇐⇒ LHS of Equation (4.1) = 0

⇐⇒ h(t) has a single root of multiplicity 2.
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However, because [(X−µX)t+(Y −µY )]2 is a non-negative random variable, its expectation
h(t) = 0 if and only if

[(X − µX)t+ (Y − µY )]2 = 0 a.s. ⇐⇒ (X − µX)t+ (Y − µY ) = 0 a.s.

⇐⇒ Y = −tX + µXt+ µY a.s.

We have shown Y = aX + b almost surely for some a, b ∈ R, a 6= 0. Thus, we are done. 2

Interpretation: If |ρXY | = 1, then the entire bivariate distribution of (X, Y ) falls on a
straight line with positive slope (ρXY = 1) or negative slope (ρXY = −1).

Bivariate Normal Distribution
Definition: The random vector is said to have a bivariate normal distribution if the
joint pdf of (X, Y ) is

fX,Y (x, y) =
1

2πσXσY
√

1− ρ2
e−Q/2,

for all (x, y) ∈ R2, where

Q =
1

1− ρ2

[(
x− µX
σX

)2

− 2ρ

(
x− µX
σX

)(
y − µY
σY

)
+

(
y − µY
σY

)2
]
.

Notation: (X, Y ) ∼ mvn2(µ,Σ), where the mean vector µ and the variance-covariance
matrix Σ are

µ =

(
µX
µY

)
2×1

and Σ =

(
σ2
X σXY

σY X σ2
Y

)
2×2

,

respectively, and where σXY = σY X = ρσXσY . Note that Σ is symmetric.

Remark: When we discuss the bivariate normal distribution, we will assume that the
correlation ρ ∈ (−1, 1). If ρ = ±1, then (X, Y ) does not have a pdf. This situation gives
rise to what is known as a “less than full rank normal distribution.” As we have just seen,
ρ = ±1 means that all of the probability mass for (X, Y ) is completely concentrated in a
linear subspace of R2.

Note: If (X, Y ) ∼ mvn2(µ,Σ), then the (joint) moment generating function is

MX,Y (t) = exp(t′µ + t′Σt/2),

where t = (t1, t2)′.

Facts: Suppose (X, Y ) ∼ mvn2(µ,Σ).

1. X ∼ N (µX , σ
2
X) and Y ∼ N (µY , σ

2
Y ). That is, bivariate normality implies univariate

normality. This is easy to show using the joint mgf above.

• The converse is not true. That is, univariate normality of X and Y does not
necessarily imply that (X, Y ) is bivariate normal; see Exercise 4.47 (pp 200 CB).
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2. Conditional distributions are normal. Specifically,

Y |{X = x} ∼ N (β0 + β1x, σ
2
Y (1− ρ2)),

where

β0 = µY − β1µX

β1 = ρ

(
σY
σX

)
.

Note that the conditional mean E(Y |X = x) = β0 + β1x is a linear function of x and
the conditional variance var(Y |X = x) = σ2

Y (1− ρ2) is free of x.

3. In the bivariate normal model,

cov(X, Y ) = 0 ⇐⇒ X ⊥⊥ Y.

Recall that this is not true in general. To prove the necessity (=⇒) one can show that
the joint mgf factors into the product of the marginal normal mgfs (when ρ = 0). One
could also show that when ρ = 0, joint pdf fX,Y (x, y) = fX(x)fY (y), where fX(x) and
fY (y) are the marginal pdfs of X ∼ N (µX , σ

2
X) and Y ∼ N (µY , σ

2
Y ), respectively.

4.6 Multivariate Distributions

Remark: We now generalize many of our bivariate distribution definitions and results to
n ≥ 2 dimensions. We will use the following notation:

X = (X1, X2, ..., Xn) ←− random vector

x = (x1, x2, ..., xn) ←− realization of X.

Mathematical definition: Suppose (S,B, P ) is a probability space. We call X : S → Rn

a random vector if
X−1(B) ≡ {ω ∈ S : X(ω) ∈ B} ∈ B,

for all B ∈ B(Rn). Sets B ∈ B(Rn) are called (n-dimensional) Borel sets. One can char-
acterize B(Rn) as the smallest σ-algebra generated by the collection of all half-open hyper-
rectangles; i.e.,

{(x1, x2, ..., xn) : −∞ < x1 ≤ a1,−∞ < x2 ≤ a2, ...,−∞ < xn ≤ an, ai ∈ R}.

The range probability space is (Rn,B(Rn), PX). We call PX the induced probability measure
of X. Similar to the univariate case, there is a one-to-one correspondence between PX and
a random vector’s cumulative distribution function (cdf), which is defined as

FX(x) = PX(X1 ≤ x1, X2 ≤ x2, ..., Xn ≤ xn),

for all x ∈ Rn. As before, we will eventually start writing P for PX.
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Definition: We call a random vector X discrete if there exists a countable set A ⊂ Rn

such that PX(X ∈ A) = 1. The joint probability mass function (pmf) of X is

fX(x) = PX(X1 = x1, X2 = x2, ..., Xn = xn).

For any B ∈ B(Rn),

PX(X ∈ B) =
∑
x∈B

fX(x).

Definition: The random vector X is continuous if there exists a function fX : Rn → R
such that

PX(X ∈ B) =

∫
B

fX(x)dx,

for all B ∈ B(Rn). We call fX(x) the joint probability density function (pdf) of X. In the
continuous case, the (joint) cdf and the joint pdf are related through

∂n

∂x1∂x2 · · · ∂xn
FX(x) = fX(x),

for all x ∈ Rn, provided that this partial derivative exists.

Mathematical Expectation: Suppose X is a random vector and let g : Rn → R. Then
g(X) is a random variable and its expected value is

E[g(X)] =
∑
x∈A

g(x)fX(x) (discrete case)

E[g(X)] =

∫
Rn
g(x)fX(x)dx (continuous case).

The usual existence issues arise; we need the sum (integral) above to converge absolutely.
Otherwise, E[g(X)] does not exist.

Marginal distributions: Suppose X ∼ fX(x). If X is continuous, the marginal pdf of Xi

is given by

fXi(xi) =

∫
Rn−1

fX(x)dx(−i),

where x(−i) = (x1, ..., xi−1, xi+1, ..., xn). If X is discrete, the marginal pmf of Xi is

fXi(xi) =
∑

x(−i)∈A

fX(x).

In other words, to find the marginal pdf (pmf) of Xi, we integrate (sum) fX(x) over the
other n − 1 variables. The “bivariate marginal” pdf fXi,Xj(xi, xj) of (Xi, Xj) can be found
by integrating (summing) fX(x) over the other n− 2 variables, and so on.

Conditional distributions: To find the conditional pdf (pmf) of a subset of random
variables, divide the joint pdf (pmf) fX(x) by the pdf (pmf) of the other variables. For
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example, suppose X = (X1, X2, X3) ∼ fX1,X2,X3(x1, x2, x3). Then, for example,

fX1|X2,X3(x1|x2, x3) =
fX1,X2,X3(x1, x2, x3)

fX2,X3(x2, x3)

fX1,X2|X3(x1, x2|x3) =
fX1,X2,X3(x1, x2, x3)

fX3(x3)
.

The first conditional distribution describes the univariate distribution of X1 when X2 = x2

and X3 = x3. The second distribution describes the bivariate distribution of X1 and X2

when X3 = x3.

Remark: Example 4.6.1 (pp 178-180 CB) illustrates many of the multivariate distribution
concepts we have discussed so far.

Moment generating functions: Set t = (t1, t2, ..., tn)′. The moment generating function
of X = (X1, X2, ..., Xn)′ is

MX(t) = E(et
′X) = E

(
et1X1+t2X2+···+tnXn

)
=

∫
Rn
et1x1+t2x2+···+tnxndFX(x).

For MX(t) to exist, we need E(et
′X) <∞ for all t in an open neighborhood about 0. That

is, ∃h1∃h2 · · · ∃hn > 0 such that E(et
′X) <∞ for all ti ∈ (−hi, hi), i = 1, 2, ..., n. Otherwise,

we say that MX(t) does not exist.

Remark: As we saw in the bivariate case, we can obtain marginal mgfs from a joint mgf.
The marginal mgf of Xi is

MXi(ti) = MX(0, ..., 0, ti, 0, ..., 0),

where ti is in the ith position. The (joint) marginal mgf of (Xi, Xj)
′ is found by

MXi,Xj(ti, tj) = MX(0, ..., 0, ti, 0, ..., 0, tj, 0, ..., 0).

Recall that from the marginal mgf MXi(ti), we can calculate

E(Xi) =
d

dti
MXi(ti)

∣∣∣∣∣
ti=0

.

A new result is that

E(XiXj) =
∂2

∂ti∂tj
MXi,Xj(ti, tj)

∣∣∣∣∣
ti=tj=0

.

From these, we can calculate

cov(Xi, Xj) = E(XiXj)− E(Xi)E(Xj).
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Multinomial Distribution
Experiment: Perform m ≥ 1 independent trials. Each trial results in one (and only one)
of n distinct category outcomes:

Probability
Category 1 p1

↗ Category 2 p2

Trial outcome −→ Category 3 p3

↘ ...
...

Category n pn

The probabilities p1, p2, ..., pn do not change from trial to trial and
∑n

i=1 pi = 1. Define

Xi = number of outcomes in Category i (out of m trials).

We call X = (X1, X2, ..., Xn)′ a multinomial random vector. The joint pmf of X is

fX(x) =
m!

x1!x2! · · ·xn!
px11 p

x2
2 · · · pxnn ,

for values of x ∈ A, where A = {(x1, x2, ..., xn) : xi = 0, 1, 2, ...,m;
∑n

i=1 xi = m}. We write
X ∼ mult(m,p;

∑n
i=1 pi = 1). The parameter p = (p1, p2, ..., pn) is an n-dimensional vector.

However, because
∑n

i=1 pi = 1, only n− 1 of these parameters are “free to vary.”

Theorem 4.6.4 (Multinomial Theorem). Let m and n be positive integers, and consider
the set A defined above. For any numbers p1, p2, ..., pn,

(p1 + p2 + · · ·+ pn)m =
∑
x∈A

m!

x1!x2! · · ·xn!
px11 p

x2
2 · · · pxnn .

This is a generalization of the binomial theorem. Clearly, the multinomial pmf sums to one.

MGF: The mgf of X ∼ mult(m,p;
∑n

i=1 pi = 1) is

MX(t) = (p1e
t1 + p2e

t2 + · · ·+ pne
tn)m,

where t = (t1, t2, ..., tn)′.
Proof. The mgf is

MX(t) = E(et
′X) = E

(
et1X1+t2X2+···+tnXn

)
=

∑
x∈A

et1x1+t2x2+···+tnxn m!

x1!x2! · · ·xn!
px11 p

x2
2 · · · pxnn

=
∑
x∈A

m!

x1!x2! · · ·xn!
(p1e

t1)x1(p2e
t2)x2 · · · (pnetn)xn ,

which is the multinomial expansion of (p1e
t1 + p2e

t2 + · · ·+ pne
tn)m. 2
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Result: If X ∼ mult(m,p;
∑n

i=1 pi = 1), then Xi ∼ b(m, pi), i = 1, 2, ..., n. That is, the
category counts X1, X2, ..., Xn have marginal binomial distributions.
Proof. The mgf of Xi is

MXi(ti) = MX(0, ..., 0, ti, 0, ..., 0) = (qi + pie
ti)m,

where qi =
∑

j 6=i pj = 1 − pi. We recognize MXi(ti) as the mgf of Xi ∼ b(m, pi). Note that
this implies

E(Xi) = mpi

var(Xi) = mpi(1− pi).

Result: If X ∼ mult(m,p;
∑n

i=1 pi = 1), then (Xi, Xj)
′ ∼ trinomial(m, pi, pj, 1− pi − pj).

Trinomial Framework

Probability
Category i pi

Trial outcome −→ Category j pj
Neither 1− pi − pj

Proof. The mgf of (Xi, Xj)
′ is

MXi,Xj(ti, tj) = MX(0, ..., 0, ti, 0, ..., 0, tj, 0, ..., 0) = (qij + pie
ti + pje

tj)m,

where qij =
∑

k 6=i,j pk = 1 − pi − pj. We recognize MXi,Xj(ti, tj) as the mgf of a
trinomial(m, pi, pj, 1− pi − pj) distribution. Also,

E(XiXj) =
∂2

∂ti∂tj
MXi,Xj(ti, tj)

∣∣∣∣∣
ti=tj=0

=
∂2

∂ti∂tj
(qij + pie

ti + pje
tj)m

∣∣∣∣∣
ti=tj=0

= m(m− 1)pipj.

Therefore, for i 6= j,

cov(Xi, Xj) = E(XiXj)− E(Xi)E(Xj)

= m(m− 1)pipj − (mpi)(mpj)

= −mpipj.

Summary: The mean and variance-covariance matrix of X ∼ mult(m,p;
∑n

i=1 pi = 1) are

µ = E(X) =


mp1

mp2
...

mpn

 = mp
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and

Σ = cov(X) =


mp1(1− p1) −mp1p2 · · · −mp1pn
−mp2p1 mp2(1− p2) · · · −mp2pn

...
...

. . .
...

−mpnp1 −mpnp2 · · · mpn(1− pn)

 = m[diag(p)− pp′],

respectively. Note that Σ is symmetric.

Remark: We now generalize many of the definitions/results we presented for bivariate
distributions (with n = 2) to n-variate distributions. Proving the general results are natural
extensions of the n = 2 results (so we will avoid).

Definition: Suppose X1, X2, ..., Xn are random variables. Let fXi(xi) denote the marginal
pdf (pmf) of Xi. The random variables X1, X2, ..., Xn are mutually independent if

fX(x) =
n∏
i=1

fXi(xi)

= fX1(x1)fX2(x2) · · · fXn(xn),

for all x ∈ Rn; i.e., the joint pdf (pmf) fX(x) factors into the product of the marginal pdfs
(pmfs). Mutual independence implies pairwise independence, which requires only that
fXi,Xj(xi, xj) = fXi(xi)fXj(xj) for each i 6= j. The opposite is not true.

Result: The random variables X1, X2, ..., Xn are mutually independent if and only if

FX(x) =
n∏
i=1

FXi(xi)

= FX1(x1)FX2(x2) · · ·FXn(xn),

for all x ∈ Rn; i.e., the joint cdf FX(x) factors into the product of the marginal cdfs.

Result: The random variables X1, X2, ..., Xn are mutually independent if and only if

MX(t) =
n∏
i=1

MXi(ti)

= MX1(t1)MX2(t2) · · ·MXn(tn),

for all ti ∈ R where these mgfs exist; that is, the joint mgf MX(t) factors into the product
of the marginal mgfs.

Theorem 4.6.6. Suppose X1, X2, ..., Xn are mutually independent. Suppose g1, g2, ..., gn
are real functions; i.e., gi : R→ R, where gi is a function of xi only, i = 1, 2, ..., n. Then

E

[
n∏
i=1

gi(Xi)

]
=

n∏
i=1

E[gi(Xi)],

that is, the expectation of the product is the product of the marginal expectations.
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Theorem 4.6.7. Suppose X1, X2, ..., Xn are mutually independent random variables. Sup-
pose the marginal mgf of Xi is MXi(t), for i = 1, 2, ..., n. The mgf of the sum

Z = X1 +X2 + · · ·+Xn

is given by

MZ(t) =
n∏
i=1

MXi(t) = MX1(t)MX2(t) · · ·MXn(t),

that is, the mgf of the sum is the product of the marginal mgfs.

Special case: If, in addition to being mutually independent, the random variables
X1, X2, ..., Xn also have the same (identical) distribution, characterized by the common mgf
MX(t), then

MZ(t) =
n∏
i=1

MX(t) = [MX(t)]n.

Random variables X1, X2, ..., Xn that are mutually independent and have the same distribu-
tion are said to be “iid,” which is an acronym for “independent and identically distributed.”

Remark: Theorem 4.6.7 (and its special case) makes getting the distribution of the sum of
mutually independent random variables very easy. The (unique) distribution identified by
MZ(t) is the answer.

Example 4.23. Suppose that X1, X2, ..., Xn are iid Poisson(λ), where λ > 0. The mgf of
the sum

Z = X1 +X2 + · · ·+Xn

is given by
MZ(t) = [MX(t)]n = [eλ(et−1)]n = enλ(et−1),

which we recognize as the mgf of a Poisson distribution with mean nλ. Because mgfs are
unique, we know that Z ∼ Poisson(nλ).

Example 4.24. SupposeX1, X2, ..., Xn are mutually independent, whereXi ∼ gamma(αi, β),
where αi, β > 0. Note that the Xi’s are not iid because they have different marginal distri-
butions (i.e., the shape parameters are potentially different). The mgf of the sum

Z = X1 +X2 + · · ·+Xn

is given by

MZ(t) =
n∏
i=1

MXi(t) =
n∏
i=1

(
1

1− βt

)αi
=

(
1

1− βt

)∑n
i=1 αi

,

which we recognize as the mgf of a gamma distribution with shape parameter
∑n

i=1 αi and
scale parameter β. Because mgfs are unique, we know that Z ∼ gamma(

∑n
i=1 αi, β).
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Remark: The result in Example 4.24 has important special cases:

1. αi = 1, for i = 1, 2, ..., n. In this case, X1, X2, ..., Xn are iid exponential(β) and

Z =
n∑
i=1

Xi ∼ gamma(n, β).

2. αi = pi/2, where pi > 0, and β = 2. In this case, X1, X2, ..., Xn are mutually indepen-
dent, Xi ∼ χ2

pi
, and

Z =
n∑
i=1

Xi ∼ gamma
(p

2
, 2
)

d
= χ2

p,

where p =
∑n

i=1 pi; i.e., “the degrees of freedom add.”

Example 4.25. Suppose X1, X2, ..., Xn are mutually independent, where Xi ∼ N (µi, σ
2
i ),

for i = 1, 2, ..., n. Consider the linear combination

Z =
n∑
i=1

aiXi = a1X1 + a2X2 + · · ·+ anXn,

where ai ∈ R. Then

Z ∼ N

(
n∑
i=1

aiµi,
n∑
i=1

a2
iσ

2
i

)
.

In other words, linear combinations of (mutually independent) normal random variables are
also normally distributed.
Proof. The mgf of Z is

MZ(t) = E(etZ) = E[et(a1X1+a2X2+···+anXn)]

= E(ea1tX1ea2tX2 · · · eantXn)
indep
= E(ea1tX1)E(ea2tX2) · · ·E(eantXn)

= MX1(a1t)MX2(a2t) · · ·MXn(ant)

=
n∏
i=1

exp[µiait+ (ait)
2σ2

i /2]

= exp

[(
n∑
i=1

aiµi

)
t+

(
n∑
i=1

a2
iσ

2
i

)
t2/2

]
,

which we recognize as the mgf of a normal distribution with mean
∑n

i=1 aiµi and variance∑n
i=1 a

2
iσ

2
i . Because mgfs are unique, the result follows. 2

Remark: In the last example, Z remains normally distributed even when the Xi’s are not
mutually independent (the only thing that potentially changes is the variance of Z).
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Linear Combinations: SupposeX1, X2, ..., Xn are random variables with (marginal) means
E(Xi) and (marginal) variances var(Xi), for i = 1, 2, ..., n. Consider the linear combination

Z =
n∑
i=1

aiXi = a1X1 + a2X2 + · · ·+ anXn.

The mean of Z is

E(Z) = E(a1X1 + a2X2 + · · ·+ anXn)

= a1E(X1) + a2E(X2) + · · ·+ anE(Xn) =
n∑
i=1

aiE(Xi).

The variance of Z is

var(Z) = var(a1X1 + a2X2 + · · ·+ anXn)

=
n∑
i=1

a2
ivar(Xi) +

∑
i 6=j

aiajcov(Xi, Xj)

=
n∑
i=1

a2
ivar(Xi) + 2

∑
i<j

aiajcov(Xi, Xj).

Theorem 4.6.11. Suppose X = (X1, X2, ..., Xn) is an n-dimensional random vector with
joint pdf (pmf) fX(x). The random variables X1, X2, ..., Xn are mutually independent if and
only if there exists functions g1(x1), g2(x2), ..., gn(xn) such that

fX(x) = g1(x1)g2(x2) · · · gn(xn),

for all x ∈ Rn. This is a generalization of Lemma 4.2.7 for n-dimensional random vectors.

Theorem 4.6.12. Suppose the random variables X1, X2, ..., Xn are mutually independent.
The random variables U1 = g1(X1), U2 = g2(X2), ..., Un = gn(Xn) are also mutually inde-
pendent. This is a generalization of Theorem 4.3.5 for n-dimensional random vectors.

Multivariate Transformations
Setting: Suppose X = (X1, X2, ..., Xn) is a continuous random vector with joint pdf fX(x)
and support A ⊆ Rn. Define

U1 = g1(X1, X2, ..., Xn)

U2 = g2(X1, X2, ..., Xn)
...

Un = gn(X1, X2, ..., Xn).

Assume that this is a one-to-one transformation from A = {x ∈ Rn : fX(x) > 0} to

B = {u ∈ Rn : ui = gi(x), i = 1, 2, ..., n; x ∈ A},
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the support of U = (U1, U2, ..., Un). Because the transformation is one-to-one (by assump-
tion), the inverse transformation is

x1 = g−1
1 (u1, u2, ..., un)

x2 = g−1
2 (u1, u2, ..., un)

...

xn = g−1
n (u1, u2, ..., un).

With u = (u1, u2, ..., un), the Jacobian of the inverse transformation is

J = det



∂g−1
1 (u)

∂u1

∂g−1
1 (u)

∂u2

· · · ∂g−1
1 (u)

∂un
∂g−1

2 (u)

∂u1

∂g−1
2 (u)

∂u2

· · · ∂g−1
2 (u)

∂un
...

...
. . .

...
∂g−1

n (u)

∂u1

∂g−1
n (u)

∂u2

· · · ∂g−1
n (u)

∂un


;

i.e., J is the determinant of this n × n matrix of partial derivatives. Provided that J 6= 0
over B, the pdf of U = (U1, U2, ..., Un), where nonzero, is

fU(u) = fX(g−1
1 (u), g−1

2 (u), ..., g−1
n (u))|J |.

This generalizes our discussion on bivariate (n = 2) transformations in Section 4.3.

Example 4.26. Suppose X1, X2, and X3 have the joint pdf

fX(x1, x2, x3) = 48x1x2x3 I(0 < x1 < x2 < x3 < 1).

Note that the support of X = (X1, X2, X3) is A = {x ∈ R3 : 0 < x1 < x2 < x3 < 1}, the
upper orthant of the unit cube in R3. Define

U1 = g1(X1, X2, X3) =
X1

X2

U2 = g2(X1, X2, X3) =
X2

X3

U3 = g3(X1, X2, X3) = X3.

This defines a one-to-one transformation from A to

B = {u ∈ R3 : 0 < u1 < 1, 0 < u2 < 1, 0 < u3 < 1}.

The inverse transformation is

x1 = g−1
1 (u1, u2, u3) = u1u2u3

x2 = g−1
2 (u1, u2, u3) = u2u3

x3 = g−1
3 (u1, u2, u3) = u3
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and the Jacobian is

J = det


∂g−1

1 (u)

∂u1

∂g−1
1 (u)

∂u2

∂g−1
1 (u)

∂u3

∂g−1
2 (u)

∂u1

∂g−1
2 (u)

∂u2

∂g−1
2 (u)

∂u3

∂g−1
3 (u)

∂u1

∂g−1
3 (u)

∂u2

∂g−1
3 (u)

∂u3

 = det

 u2u3 u1u3 u1u2

0 u3 u2

0 0 1

 = u2u
2
3,

which is never equal to zero over B. Therefore, the joint pdf of U = (U1, U2, U3), for u ∈ B,
is given by

fU(u1, u2, u3) = fX(g−1
1 (u), g−1

2 (u), g−1
3 (u))|J |

= 48(u1u2u3)(u2u3)(u3)× u2u
2
3

= 48u1u
3
2u

5
3.

Notice that we can write

fU(u1, u2, u3) = 48u1u
3
2u

5
3 I(0 < u1 < 1, 0 < u2 < 1, 0 < u3 < 1)

= 2u1I(0 < u1 < 1) 4u3
2I(0 < u2 < 1) 6u5

3I(0 < u3 < 1)

= fU1(u1)fU2(u2)fU3(u3).

We see that U1 ∼ beta(2, 1), U2 ∼ beta(4, 1), and U3 ∼ beta(6, 1). Also, U1, U2, and U3 are
mutually independent.

4.7 Inequalities

Remark: This section is divided into two parts. Section 4.7.1 presents numerical inequali-
ties; Section 4.7.2 presents functional inequalities. We highlight one of each.

Hölder’s Inequality: Suppose X and Y are random variables, and let p and q be constants
that satisfy

1

p
+

1

q
= 1.

Then
|E(XY )| ≤ E(|XY |) ≤ [E(|X|p)]1/p[E(|Y |q)]1/q.

Proof. See CB (pp 186-187).

Note: The most important special case of Hölder’s Inequality arises when p = q = 2:

|E(XY )| ≤ E(|XY |) ≤ [E(X2)]1/2[E(Y 2)]1/2.

This is called the Cauchy-Schwarz Inequality.
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Application: In the Cauchy-Schwarz Inequality, if we replace X with X − µX and Y with
Y − µY , we get

|E[(X − µX)(Y − µY )]| ≤ {E[(X − µX)2]}1/2{E[(Y − µY )2]}1/2.

Squaring both sides, we get
[cov(X, Y )]2 ≤ σ2

Xσ
2
Y .

This is called the covariance inequality.

Note: From the covariance inequality, it follows immediately than −1 ≤ ρXY ≤ 1. Using
Cauchy-Schwarz is far easier than how we proved it in Theorem 4.5.7.

Jensen’s Inequality: Suppose X is a random variable and suppose g : R→ R is a convex
function. Then

E[g(X)] ≥ g(E(X)).

Remark: See Definition 4.7.6 for a general definition of convexity. If g is twice differentiable,
then g is convex if g′′(x) ≥ 0 for all x. If g is strictly convex, then the inequality is strict. In
the proof below, I will assume that g is twice differentiable. This assumption is not needed;
see CB (pp 190) for a more general proof.

Proof. Expand g(x) in a Taylor series about µ = E(X) of order two; i.e.,

g(x) = g(µ) + g′(µ)(x− µ) +
g′′(ξ)

2
(x− µ)2,

where ξ is between x and µ (a consequence of the Mean Value Theorem). Note that

g′′(ξ)

2
(x− µ)2 ≥ 0

because g is convex by assumption. Therefore,

g(x) ≥ g(µ) + g′(µ)(x− µ)

and, taking expectations,

E[g(X)] ≥ E[g(µ) + g′(µ)(X − µ)] = g(µ) + g′(µ)E(X − µ)︸ ︷︷ ︸
= 0

= g(E(X)). 2

Application: Suppose X is a random variable with finite second moment; i.e., E(X2) <∞.
Note that g(x) = x2 is a convex function because g′′(x) = 2 > 0, for all x. Therefore, Jensen’s
Inequality says that

E[g(X)] = E(X2) ≥ [E(X)]2 = g(E(X)).

Of course, we already know this because var(X) = E(X2)− [E(X)]2 ≥ 0.

Note: If g is concave, then −g is convex. (If g is twice differentiable, then this is obvious).
Therefore, if g is concave, the inequality switches:

E[g(X)] ≤ g(E(X)).

For example, consider g(x) = lnx, which is concave because g′′(x) = −1/x2 < 0, for all x.
Therefore, assuming that all expectations exist, we have

E[g(X)] = E(lnX) ≤ ln(E(X)) = g(E(X)).
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5 Properties of a Random Sample

Complementary reading: Chapter 5 (CB). Sections 5.1-5.5.

5.1 Basic Concepts of a Random Sample

Definition: The random variables X1, X2, ..., Xn are called a random sample from the
population fX(x) if

1. X1, X2, ..., Xn are mutually independent

2. The marginal pdf (pmf) of each Xi is the same function fX(x).

Alternatively, we say that

“X1, X2, ..., Xn are iid from fX(x).”

The acronym “iid” is short for “independent and identically distributed.” The function
fX(x) is called the population distribution because it is the distribution that describes
the population from which the Xi’s are “drawn.”

Conceptualization: Consider an experiment that is repeated n times, independently and
under identical conditions. Each time the experiment is performed, you observe an Xi whose
distribution is described by fX(x). Performing the experiment n times yields X1, X2, ..., Xn.

Result: If X1, X2, ..., Xn are iid from fX(x), the joint pdf (pmf) of X = (X1, X2, ..., Xn) is

fX(x) =
n∏
i=1

fX(xi) = fX(x1)fX(x2) · · · fX(xn).

This follows immediately from Definition 4.6.5 (CB, pp 182).

Example 5.1. Suppose that X1, X2, ..., Xn are iid N (µ, σ2), where −∞ < µ < ∞ and
σ2 > 0. Here, the N (µ, σ2) population distribution is

fX(x) =
1√
2πσ

e−(x−µ)2/2σ2

I(x ∈ R).

This is the (marginal) pdf of each Xi. The joint pdf of X = (X1, X2, ..., Xn) is

fX(x) =
n∏
i=1

fX(xi) =
n∏
i=1

1√
2πσ

e−(xi−µ)2/2σ2

I(xi ∈ R)

=

(
1√
2πσ

)n
e−

1
2σ2

∑n
i=1(xi−µ)2I(x ∈ Rn).
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Remark: This function, when viewed as a function of x1, x2, ..., xn, describes probabilisti-
cally the (joint) random behavior of X1, X2, ..., Xn. Later on (when we start thinking about
estimation), we will begin to regard fX(x) not as a function of x1, x2, ..., xn but instead as
a function of θ = (µ, σ2)′ with the xi’s held fixed. This will give rise to what we call a
likelihood function.

Discussion: Under an iid sampling model, calculations involving the joint distribution of
X = (X1, X2, ..., Xn) are greatly simplified. Suppose that in Example 5.1 we wanted to
calculate the probability that each Xi exceeded the mean µ by two standard deviations; i.e.,

P (X1 > µ+ 2σ,X2 > µ+ 2σ, ..., Xn > µ+ 2σ).

From first principles, this probability could be found by taking fX(x) and integrating it over
the set B = {x ∈ Rn : x1 > µ+ 2σ, x2 > µ+ 2σ, ..., xn > µ+ 2σ}, that is, by calculating∫ ∞

µ+2σ

∫ ∞
µ+2σ

· · ·
∫ ∞
µ+2σ

(
1√
2πσ

)n
e−

1
2σ2

∑n
i=1(xi−µ)2dx1dx2 · · · dxn.

This is a tedious calculation to make directly using the joint distribution fX(x). However,
note that we can write

P (X1 > µ+ 2σ,X2 > µ+ 2σ, ..., Xn > µ+ 2σ)

= P (X1 > µ+ 2σ)P (X2 > µ+ 2σ) · · ·P (Xn > µ+ 2σ) (mutually independent)

= [P (X1 > µ+ 2σ)]n, (identically distributed)

which is much easier. We have reduced an n-fold integral calculation to a single integral
calculation from one marginal distribution. Of course, we pay a price for this simplicity−we
have to make strong assumptions about the stochastic behavior of X1, X2, ..., Xn.

Remark: When we say “random sample,” we essentially mean that we are sampling from
an infinite population. When sampling from a finite population, say, {x1, x2, ..., xN}, where
N <∞ denotes the size of the population, we can sample in two ways:

1. SRSWR (simple random sample with replacement).

• When sampling with replacement, the value xi is “replaced” after it is selected
(e.g., think of drawing numbered balls out of a hat; each time you draw a ball
and observe it, you put it back in the hat).

• In this case, each Xi has the same discrete uniform distribution, with probability
1/N attached to each of x1, x2, ..., xN . The Xi’s are also mutually independent
because the process of choosing each xi is the same. In other words, X1, X2, ..., Xn

remain iid.

• This type of sampling model forms the basis for the statistical (re)-sampling
technique known as bootstrapping.
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2. SRSWOR (simple random sample without replacement).

• When sampling without replacement, the value xi is not replaced after it is
selected (e.g., after you draw a ball and observe it, you do not put it back).

• In this case, the Xi’s are no longer mutually independent. To see why, note that

P (X1 = x1) =
1

N
P (X2 = x1|X1 = x1) = 0.

Therefore, X1 and X2 are not independent.

• Interestingly, the Xi’s remain identically distributed; see CB (pp 210).

• Heuristically, if the population size N is “large,” this type of sampling closely
approximates sampling from an infinite population; see Example 5.1.3 (CB, pp
210-211).

Disclaimer: In this course, unless otherwise noted, we will regard X1, X2, ..., Xn as iid.

5.2 Sums of Random Variables from a Random Sample

Definition: Suppose X1, X2, ..., Xn is a random sample. A statistic T is a function of
X1, X2, ..., Xn, that is,

T = T (X) = T (X1, X2, ..., Xn).

The only restriction is that a statistic T cannot depend on unknown parameters.

Examples: Each of the following satisfies the definition of a statistic:

1. Sample mean: T (X) = X, where

X =
1

n

n∑
i=1

Xi

2. Sample variance: T (X) = S2, where

S2 =
1

n− 1

n∑
i=1

(Xi −X)2

3. Minimum order statistic: T (X) = X(1) = min{X1, X2, ..., Xn}

4. Sample range: T (X) = X(n) −X(1).
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Note: The definition of a statistic is very broad. For example, even something like

T (X) = ln(S2 + 4)− 12.08e− tan(
∑n
i=1 |X3

i |)

satisfies the definition. In addition, if µ and σ2 are unknown, then

• X is a statistic, but X − µ is not.

• S2 is a statistic, but S2/σ2 is not.

Definition: Suppose X1, X2, ..., Xn is an iid sample from fX(x). Suppose that T = T (X)
is a statistic. The probability distribution of T is called its sampling distribution.

Revelation: Because T = T (X), a function of X1, X2, ..., Xn, the statistic T is itself a
random variable (or a random vector if T is vector-valued). Therefore, T has its own distri-
bution! This distribution is called the sampling distribution of T . In notation,

X1, X2, ..., Xn ∼ fX(x) ←− population distribution

T = T (X1, X2, ..., Xn) ∼ fT (t) ←− sampling distribution of T

Common goals: For a statistic T = T (X), we may want to find its pdf (pmf) fT (t), its
cdf FT (t), or perhaps its mgf MT (t). These functions identify the distribution of T . We
might also want to calculate E(T ) or var(T ). These quantities describe characteristics of T ’s
distribution.

Lemma: Suppose X1, X2, ..., Xn are iid with E(X) = µ and var(X) = σ2 <∞. Then

E

(
n∑
i=1

Xi

)
= nE(X1) = nµ

var

(
n∑
i=1

Xi

)
= nvar(X1) = nσ2.

Proof. Exercise. Compare this result with Lemma 5.2.5 (CB, pp 213), which is slightly more
general.

Theorem 5.2.6. Suppose X1, X2, ..., Xn are iid with E(X) = µ and var(X) = σ2 < ∞.
Then

(a) E(X) = µ

(b) var(X) = σ2/n

(c) E(S2) = σ2.
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Proof. To prove (a) and (b), just use the last lemma. We have

E(X) = E

(
1

n

n∑
i=1

Xi

)
=

1

n
E

(
n∑
i=1

Xi

)
=

1

n
(nµ) = µ

var(X) = var

(
1

n

n∑
i=1

Xi

)
=

1

n2
var

(
n∑
i=1

Xi

)
=

1

n2
(nσ2) =

σ2

n
.

To prove part (c), first note that

n∑
i=1

(Xi −X)2 =
n∑
i=1

X2
i − nX

2
.

Therefore,

E(S2) = E

[
1

n− 1

n∑
i=1

(Xi −X)2

]
=

1

n− 1
E

(
n∑
i=1

X2
i − nX

2

)

=
1

n− 1

[
E

(
n∑
i=1

X2
i

)
− nE(X

2
)

]
.

Now,

E

(
n∑
i=1

X2
i

)
=

n∑
i=1

E(X2
i ) =

n∑
i=1

{var(Xi) + [E(Xi)]
2} =

n∑
i=1

(σ2 + µ2) = n(σ2 + µ2)

and

E(X
2
) = var(X) + [E(X)]2 =

σ2

n
+ µ2.

Therefore,

E(S2) =
1

n− 1

[
n(σ2 + µ2)− n

(
σ2

n
+ µ2

)]
= σ2. 2

Curiosity: How would we find var(S2)? This is in general a much harder calculation.

Theorem 5.2.7. Suppose X1, X2, ..., Xn are iid with moment generating function (mgf)
MX(t). The mgf of X is

MX(t) = [MX(t/n)]n.

Proof. The mgf of X is

MX(t) = E(etX) = E[e
t
n

(X1+X2+···+Xn)] = E(e
t
n
X1e

t
n
X2 · · · e

t
n
Xn)

indep
= E(e

t
n
X1)E(e

t
n
X2) · · ·E(e

t
n
Xn)

= MX1(t/n)MX2(t/n) · · ·MXn(t/n)
ident
= [MX(t/n)]n. 2

PAGE 140



STAT 712: CHAPTER 5 JOSHUA M. TEBBS

Remark: Theorem 5.2.7 is useful. It allows us to quickly obtain the mgf of X (and hence
quickly identify its distribution), as the next two examples illustrate.

Example 5.2. Suppose that X1, X2, ..., Xn are iid N (µ, σ2). Recall that the (population)
mgf of X ∼ N (µ, σ2) is

MX(t) = eµt+σ
2t2/2,

for all t ∈ R. Therefore,

MX(t) = [eµ(t/n)+σ2(t/n)2/2]n

= eµt+(σ2/n)t2/2,

which we recognize as the mgf of a N (µ, σ2/n) distribution. Because mgfs are unique, we
know that X ∼ N (µ, σ2/n).

Example 5.3. Suppose that X1, X2, ..., Xn are iid gamma(α, β). Recall that the (popula-
tion) mgf of X ∼ gamma(α, β) is

MX(t) =

(
1

1− βt

)α
,

for t < 1/β. Therefore,

MX(t) =

{[
1

1− β(t/n)

]α}n
=

[
1

1− (β/n)t

]nα
,

for t < n/β, which we recognize as the mgf of a gamma(nα, β/n) distribution. Because mgfs
are unique, we know that X ∼ gamma(nα, β/n).

Special case: X1, X2, ..., Xn ∼ iid exponential(β) =⇒ X ∼ gamma(n, β/n).

Remark: In cases where Theorem 5.2.7 is not useful (e.g., the population mgf does not
exist, etc.), the convolution technique can be.

Theorem 5.2.9 (Convolution). If X and Y are independent continuous random variables
with marginal pdfs fX(x) and fY (y), respectively, then the pdf of Z = X + Y is

fZ(z) =

∫
R
fX(w)fY (z − w)dw.

The pdf fZ(z) is called the convolution of fX(x) and fY (y).
Proof. Introduce W = X and perform a bivariate transformation:

w = g1(x, y) = x
z = g2(x, y) = x+ y

=⇒ x = g−1
1 (w, z) = w

y = g−1
2 (w, z) = z − w
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The Jacobian of the (inverse) transformation is

J = det

∣∣∣∣∣∣∣
∂g−1

1 (w, z)

∂w

∂g−1
1 (w, z)

∂z
∂g−1

2 (w, z)

∂w

∂g−1
2 (w, z)

∂z

∣∣∣∣∣∣∣ = det

∣∣∣∣ 1 0
−1 1

∣∣∣∣ = 1.

Therefore, the joint pdf of (W,Z) is given by

fW,Z(w, z) = fX,Y (w, z − w)
X⊥⊥Y
= fX(w)fY (z − w).

Finally,

fZ(z) =

∫
R
fX(w)fY (z − w)dw

as claimed. 2

Example 5.4. Suppose that X ∼ U(0, 1), Y ∼ U(0, 1), and X ⊥⊥ Y . Find the pdf of
Z = X + Y .
Solution. First, note that the support of Z is Z = {z : 0 < z < 2}. The marginal pdfs of
X and Y are fX(x) = I(0 < x < 1) and fY (y) = I(0 < y < 1), respectively. Using the
convolution formula, the pdf of Z = X + Y is

fZ(z) =

∫
R
fX(w)fY (z − w)dw

=

∫
R
I(0 < w < 1)I(0 < z − w < 1)dw

=

∫ 1

0

I(0 < z − w < 1)dw.

Note that 0 < z − w < 1 ⇐⇒ z − 1 < w < z and also 0 < w < 1. Therefore, if 0 < z ≤ 1,
then

fZ(z) =

∫ z

0

dw = z.

If 1 < z < 2, then

fZ(z) =

∫ 1

z−1

dw = 2− z.

Therefore, the pdf of Z = X + Y is given by

fZ(z) =


z, 0 < z ≤ 1

2− z, 1 < z < 2
0, otherwise.

The pdf fZ(z), shown in Figure 5.1 (next page), is a member of the triangular family of
distributions (the name is not surprising).
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Figure 5.1: The pdf of Z in Example 5.4.

Example 5.5. Suppose that X ∼ Cauchy(0, σX), Y ∼ Cauchy(0, σY ), and X ⊥⊥ Y . Find
the pdf of Z = X + Y .
Solution. First, note that the support of Z is Z = {z : −∞ < z < ∞}. The marginal pdfs
of X and Y are

fX(x) =
1

πσX [1 + ( x
σX

)2]
I(x ∈ R)

fY (y) =
1

πσY [1 + ( y
σY

)2]
I(y ∈ R).

Using the convolution formula, the pdf of Z, for all z ∈ R, is

fZ(z) =

∫
R
fX(w)fY (z − w)dw

=

∫
R

1

πσX [1 + ( w
σX

)2]

1

πσY [1 + ( z−w
σY

)2]
dw

=
1

π(σX + σY )[1 + ( z
σX+σY

)2]
,

where the last step follows from using the method of partial fractions (see Exercise 5.7, CB,
pp 256). Therefore, it follows that Z ∼ Cauchy(0, σX + σY ).
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Extension: Suppose that X1, X2, ..., Xn are iid Cauchy(µ, σ), where −∞ < µ < ∞ and
σ > 0. What is the sampling distribution of X?
Solution. The easiest way to answer this would be to use characteristic functions. The
characteristic function of X ∼ Cauchy(µ, σ) is

ψX(t) = E(eitX) = eµit−σ|t|,

where i =
√
−1. Therefore,

ψX(t) = [ψX(t/n)]n = [eµi(t/n)−σ|t|/n]n = eµit−σ|t|,

which we recognize as the characteristic function of the Cauchy(µ, σ) distribution. Therefore,

X1, X2, ..., Xn ∼ iid Cauchy(µ, σ) =⇒ X ∼ Cauchy(µ, σ).

Q: Can we show this without using characteristic functions?
A: Yes, this could be done in three steps.

1. First, argue that

Z1, Z2, ..., Zn ∼ iid Cauchy(0, 1) =⇒
n∑
i=1

Zi ∼ Cauchy(0, n).

This could be done using convolution for n = 2. Then use induction.

2. Next, argue that

fZ(z) = nf∑n
i=1 Zi

(nz)

=
1

π(1 + z2)
I(z ∈ R),

i.e., Z ∼ Cauchy(0, 1). See Exercise 5.5 (CB, pp 256) to see why the first equality
holds.

3. Finally, let Xi = σZi + µ, for each i = 1, 2, ..., n, so that X = σZ + µ (a location-scale
transformation). Therefore,

fX(x) =
1

σ
fZ

(
x− µ
σ

)
=

1

πσ
[
1 +

(
x−µ
σ

)2
] I(x ∈ R),

i.e., X ∼ Cauchy(µ, σ).

Obviously, the characteristic function argument is much easier. However, to understand
characteristic functions, you have to understand complex analysis. As in the words of CB,
“you win some and you lose some.”
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Back to exponential families....
Theorem 5.2.11. Suppose X1, X2, ..., Xn are iid with pdf (pmf) in the exponential family;
i.e.,

fX(x|θ) = h(x)c(θ) exp

{
k∑
i=1

wi(θ)ti(x)

}
.

Define the statistics

T1 = T1(X) =
n∑
j=1

t1(Xj)

T2 = T2(X) =
n∑
j=1

t2(Xj)

...

Tk = Tk(X) =
n∑
j=1

tk(Xj)

and set T = (T1, T2, ..., Tk), a k-dimensional statistic. If fX(x|θ) is a full exponential family;
i.e., if

d = dim(θ) = k,

then

fT(t|θ) = H(t)[c(θ)]n exp

{
k∑
i=1

wi(θ)ti

}
.

That is, T has pdf (pmf) in the exponential family as well.

Example 5.6. Suppose X1, X2, ..., Xn are iid gamma(α, β); i.e., the population pdf is

fX(x|θ) =
1

Γ(α)βα
xα−1e−x/βI(x > 0)

=
I(x > 0)

x

1

Γ(α)βα
exp

(
α lnx− x

β

)
= h(x)c(θ) exp{w1(θ)t1(x) + w2(θ)t2(x)},

where θ = (α, β)′, h(x) = I(x > 0)/x, c(θ) = [Γ(α)βα]−1, w1(θ) = α, t1(x) = lnx,
w2(θ) = −1/β, and t2(x) = x. Note that this is a full exponential family with d = k = 2.
Theorem 5.2.11 says that T = (T1, T2), where

T1 = T1(X) =
n∑
j=1

lnXj and T2 = T2(X) =
n∑
j=1

Xj,

has a (joint) pdf that also falls in the exponential family; i.e., fT(t|θ) can be written in the
form

fT(t|θ) = H(t)[c(θ)]n exp

{
2∑
i=1

wi(θ)ti

}
.
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5.3 Sampling from the Normal Distribution

Remark: This section is dedicated to results that arise when X1, X2, ..., Xn are normally
distributed.

Theorem 5.3.1. Suppose that X1, X2, ..., Xn are iid N (µ, σ2). Let X and S2 denote the
sample mean and the sample variance, respectively. Then

(a) X ⊥⊥ S2

(b) X ∼ N (µ, σ2/n) ←− we showed this in Example 5.2

(c) (n− 1)S2/σ2 ∼ χ2
n−1.

Proof. We first prove part (a). Recall that

S2 =
1

n− 1

n∑
i=1

(Xi −X)2

=
1

n− 1

n∑
i=2

(Xi −X)2 +
1

n− 1
(X1 −X)2.

Note also that
n∑
i=1

(Xi −X) = 0 =⇒ X1 −X = −
n∑
i=2

(Xi −X).

Therefore, we can rewrite S2 as

S2 =
1

n− 1

n∑
i=2

(Xi −X)2 +
1

n− 1

[
−

n∑
i=2

(Xi −X)

]2

= g(X2 −X,X3 −X, ..., Xn −X), say.

Because functions of independent random variables (vectors) are independent, it suffices to
show that X ⊥⊥ (X2 −X,X3 −X, ..., Xn −X). Consider the n-variate transformation

y1 = x
y2 = x2 − x
y3 = x3 − x

...
yn = xn − x

=⇒

x1 = y1 −
∑n

i=2 yi
x2 = y1 + y2

x3 = y1 + y3
...

xn = y1 + yn.

The Jacobian of the (inverse) transformation is

J = det


1 −1 −1 · · · −1
1 1 0 · · · 0
1 0 1 · · · 0
...

...
...

. . .
...

1 0 0 · · · 1

 = n.

PAGE 146



STAT 712: CHAPTER 5 JOSHUA M. TEBBS

Therefore, the pdf of Y = (Y1, Y2, ..., Yn) is given by

fY(y) = fX

(
y1 −

n∑
i=2

yi, y1 + y2, y1 + y3, ..., y1 + yn

)
|n|.

Going forward, we assume (without loss of generality) that X1, X2, ..., Xn are iid N (µ, σ2),
with µ = 0 and σ2 = 1. Under this assumption,

fX(x) =
n∏
i=1

1√
2π
e−x

2
i /2I(xi ∈ R)

=

(
1√
2π

)n
e−

1
2

∑n
i=1 x

2
i I(x ∈ Rn).

This simplifies the calculations and is not prohibitive because the N (µ, σ2) family is a
location-scale family (see CB, pp 216-217). From above, we therefore have, for all y ∈ Rn,

fY(y) =
n

(2π)n/2
exp

−1

2

(y1 −
n∑
i=2

yi

)2

+
n∑
i=2

(y1 + yi)
2


=

n

(2π)n/2
e−ny

2
1/2︸ ︷︷ ︸

h1(y1)

× exp

−1

2

 n∑
i=2

y2
i +

(
n∑
i=2

yi

)2
︸ ︷︷ ︸

h2(y2,y3,...,yn)

.

Because the joint pdf factors, by Theorem 4.6.11, it follows that Y1 ⊥⊥ (Y2, Y3, ..., Yn), that
is, X ⊥⊥ (X2 − X,X3 − X, ..., Xn − X). The same conclusion would have been reached
had we allowed X1, X2, ..., Xn to be iid N (µ, σ2), µ and σ2 arbitrary; the calculations would
have just been far messier. We have proven part (a). To prove part (c), we first recall the
following:

Xi ∼ N (µ, σ2) =⇒ Zi =
Xi − µ
σ

∼ N (0, 1) =⇒ Z2
i ∼ χ2

1.

Therefore, the random variables Z2
1 , Z

2
2 , ..., Z

2
n are iid χ2

1. Because the degrees of freedom
add (see Example 4.24 in the notes),

n∑
i=1

Z2
i =

n∑
i=1

(
Xi − µ
σ

)2

∼ χ2
n.

Now, write

W1 =
n∑
i=1

(
Xi − µ
σ

)2

=
n∑
i=1

(
Xi −X +X − µ

σ

)2

=
n∑
i=1

(
Xi −X

σ

)2

+ 2
n∑
i=1

(
Xi −X

σ

)(
X − µ
σ

)
︸ ︷︷ ︸

= 0

+
n∑
i=1

(
X − µ
σ

)2

.
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It is easy to show that the cross product term is zero because

n∑
i=1

(Xi −X) = 0.

Therefore, we have

W1 =
n∑
i=1

(
Xi − µ
σ

)2

=
n∑
i=1

(
Xi −X

σ

)2

︸ ︷︷ ︸
= W2

+n

(
X − µ
σ

)2

︸ ︷︷ ︸
= W3

.

Now,

W3 = n

(
X − µ
σ

)2

=

(
X − µ
σ/
√
n

)2

∼ χ2
1,

because X ∼ N (µ, σ2/n), and

W2 =
n∑
i=1

(
Xi −X

σ

)2

=
1

σ2

n∑
i=1

(Xi −X)2 =
(n− 1)S2

σ2
.

Furthermore, we know that W2 ⊥⊥ W3 because X ⊥⊥ S2 and functions of independent random
variables are independent. The mgf of W1 ∼ χ2

n is, for t < 1/2,(
1

1− 2t

)n/2
= MW1(t) = E(etW1) = E[et(W2+W3)]

= E(etW2etW3)
W2⊥⊥W3= E(etW2)E(etW3)

= MW2(t)MW3(t)

= MW2(t)

(
1

1− 2t

)1/2

,

because W3 ∼ χ2
1. This shows that

MW2(t) =

(
1

1− 2t

)(n−1)/2

,

which, when t < 1/2, we recognize as the mgf of a χ2
n−1 random variable. Because mgfs are

unique,

W2 =
(n− 1)S2

σ2
∼ χ2

n−1. 2

Remark: My proof of part (c) is different than the proof your authors provide on pp 219-220
(CB). They use mathematical induction (I like mine better).
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Remark: When X1, X2, ..., Xn are iid N (µ, σ2),

n∑
i=1

(
Xi − µ
σ

)2

∼ χ2
n

(n− 1)S2

σ2
=

n∑
i=1

(
Xi −X

σ

)2

∼ χ2
n−1.

In the second result, one can interpret having to “estimate” µ with X as being responsible
for “losing” a degree of freedom.

Remark: When X1, X2, ..., Xn are iid N (µ, σ2), we have shown that (n− 1)S2/σ2 ∼ χ2
n−1.

Therefore, we get the following results “for free:”

E

[
(n− 1)S2

σ2

]
= n− 1

var

[
(n− 1)S2

σ2

]
= 2(n− 1).

The first result implies that E(S2) = σ2. Of course, this is nothing new. We proved
E(S2) = σ2 in general; i.e., for any population distribution with finite variance. The second
result implies

(n− 1)2

σ4
var(S2) = 2(n− 1) =⇒ var(S2) =

2σ4

n− 1
.

This is a new result. However, it only applies when X1, X2, ..., Xn are iid N (µ, σ2).

General result: Suppose that X1, X2, ..., Xn are iid with E(X4) <∞. Then

var(S2) =
1

n

[
µ4 −

(
n− 3

n− 1

)
σ4

]
,

where recall µ4 = E[(X − µ)4] is the fourth central moment of X. See pp 257 (CB). As an
exercise, show that this expression for var(S2) reduces to 2σ4/(n− 1) in the normal case.

Lemma 5.5.3 (special case). Suppose that X1, X2, ..., Xn are independent random variables
with Xj ∼ N (µj, σ

2
j ), for j = 1, 2, ..., n. Define the linear combinations

U =
n∑
j=1

ajXj = a1X1 + a2X2 + · · ·+ anXn

V =
n∑
j=1

bjXj = b1X1 + b2X2 + · · ·+ bnXn,

where aj, bj ∈ R are fixed constants (i.e., not random). Then

U ⊥⊥ V ⇐⇒ cov(U, V ) = 0.

In other words, the linear combinations U and V are independent if and only if U and V are
uncorrelated.
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Remark: Your authors prove this result in a very special case, by assuming that n = 2
and X1, X2 are iid N (0, 1), i.e., µ1 = µ2 = 0 and σ2

1 = σ2
2 = 1. They perform a bivariate

transformation to obtain the joint pdf fU,V (u, v), where U = a1X1 + a2X2 and V = b1X1 +
b2X2, and then show that

fU,V (u, v) = fU(u)fV (v) ⇐⇒ cov(U, V ) = 0.

Result: Suppose U and V are linear combinations as defined on the last page. If
X1, X2, ..., Xn are independent random variables (not necessarily normal), then

cov(U, V ) =
n∑
j=1

ajbjσ
2
j .

Establishing this result is not difficult and is merely an exercise in patience (use the covari-
ance computing formula and then do lots of algebra). Interestingly, under the simplified
assumption that σ2

j = 1 for all j,

cov(U, V ) =
n∑
j=1

ajbj = a′b,

where a = (a1, a2, ..., an)′ and b = (b1, b2, ..., bn)′. Therefore U ⊥⊥ V if and only if a and b
are orthogonal vectors in Rn.

Student’s t distribution: Suppose that U ∼ N (0, 1), V ∼ χ2
p, and U ⊥⊥ V . The random

variable

T =
U√
V/p

∼ tp,

a t distribution with p degrees of freedom. The pdf of T is

fT (t) =
Γ(p+1

2
)

√
pπ Γ(p

2
)

1

(1 + t2

p
)(p+1)/2

I(t ∈ R).

Note: If p = 1, then T ∼ Cauchy(0, 1).

Application: Suppose that X1, X2, ..., Xn are iid N (µ, σ2). We already know that

Z =
X − µ
σ/
√
n
∼ N (0, 1).

The quantity

T =
X − µ
S/
√
n
∼ tn−1,

where S denotes the sample standard deviation of X1, X2, ..., Xn. To see why, note that

T =
X − µ
S/
√
n

=
σ

S

(
X − µ
σ/
√
n

)
=

X − µ
σ/
√
n√

(n− 1)S2

σ2

/
(n− 1)

∼ “N (0, 1)”√
“χ2

n−1”

n− 1

.

Because X ⊥⊥ S2, the numerator and denominator are independent. Therefore, T ∼ tn−1.
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Derivation: Suppose U ∼ N (0, 1), V ∼ χ2
p, and U ⊥⊥ V . The joint pdf of (U, V ) is

fU,V (u, v) =
1√
2π
e−u

2/2︸ ︷︷ ︸
N (0,1) pdf

1

Γ(p
2
)2p/2

v
p
2
−1e−v/2︸ ︷︷ ︸

χ2
p pdf

,

for −∞ < u <∞ and v > 0. Consider the bivariate transformation

T = g1(U, V ) =
U√
V/p

W = g2(U, V ) = V.

The support of (U, V ) is the set A = {(u, v) : −∞ < u <∞, v > 0}. The support of (T,W )
is B = {(t, w) : −∞ < t < ∞, w > 0}. The transformation above is one-to-one, so the
inverse transformation exists and is given by

u = g−1
1 (t, w) = t

√
w/p

v = g−1
2 (t, w) = w.

The Jacobian of the (inverse) transformation is

J = det

∣∣∣∣∣∣∣
∂g−1

1 (t, w)

∂t

∂g−1
1 (t, w)

∂w
∂g−1

2 (t, w)

∂t

∂g−1
2 (t, w)

∂w

∣∣∣∣∣∣∣ = det

∣∣∣∣∣
√
w/p t√

p
1
2
w−1/2

0 1

∣∣∣∣∣ =

√
w

p
,

which never vanishes over B. For (t, w) ∈ B, the joint pdf of (T,W ) is

fT,W (t, w) = fU,V (g−1
1 (t, w), g−1

2 (t, w))|J |

=
1√
2π
e−(t
√
w/p)2/2 1

Γ(p
2
)2p/2

w
p
2
−1e−w/2

∣∣∣∣√w

p

∣∣∣∣
=

1√
2π

1
√
p
e−(t
√
w/p)2/2 1

Γ(p
2
)2p/2

w
p+1
2
−1e−w/2

=
1√
2π

1
√
p

1

Γ(p
2
)2p/2

w
p+1
2
−1e−w(1+ t2

p
)/2.

Therefore, the marginal pdf of T is

fT (t) =

∫ ∞
0

fT,W (t, w)dw

=
1√
2π

1
√
p

1

Γ(p
2
)2p/2

∫ ∞
0

w
p+1
2
−1e−w(1+ t2

p
)/2︸ ︷︷ ︸

gamma(a,b) kernel

dw,

where a = (p+ 1)/2 and b = 2
(

1 + t2

p

)−1

. The gamma integral above equals

Γ(a)ba = Γ

(
p+ 1

2

)[
2

(
1 +

t2

p

)−1
](p+1)/2

.
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Therefore, for all t ∈ R,

fT (t) =
1√
2π

1
√
p

1

Γ(p
2
)2p/2

Γ

(
p+ 1

2

)[
2

(
1 +

t2

p

)−1
](p+1)/2

=
Γ(p+1

2
)

√
pπ Γ(p

2
)

1

(1 + t2

p
)(p+1)/2

,

as claimed. 2

Moments: If T ∼ tp, then

E(T ) = 0, if p > 1

var(T ) =
p

p− 2
, if p > 2.

To show that E(T ) = 0 when p > 1, suppose U ∼ N (0, 1), V ∼ χ2
p, and U ⊥⊥ V . Write

E(T ) = E

(
U√
V/p

)
U⊥⊥V
= E(U)E

(
1√
V/p

)
= 0,

because E(U) = 0. We need to investigate the second expectation to see why the “p > 1”

condition is needed. Recall that V ∼ χ2
p
d
= gamma(p

2
, 2). Therefore,

E

(
1√
V/p

)
=
√
pE

(
1√
V

)
=
√
p

∫ ∞
0

1√
v

1

Γ(p
2
)2p/2

v
p
2
−1e−v/2dv

=

√
p

Γ(p
2
)2p/2

∫ ∞
0

v
p−1
2
−1e−v/2dv

=

√
p

Γ(p
2
)2p/2

Γ

(
p− 1

2

)
2(p−1)/2

=

√
pΓ(p−1

2
)

√
2Γ(p

2
)
,

which is finite. However, the penultimate equality holds only when (p− 1)/2 > 0; i.e., when
p > 1. Showing var(T ) = p/(p− 2) when p > 2 is done similarly.

Snedecor’s F distribution: Suppose that U ∼ χ2
p, V ∼ χ2

q, and U ⊥⊥ V . The random
variable

W =
U/p

V/q
∼ Fp,q,

an F distribution with (numerator) p and (denominator) q degrees of freedom. The pdf of
W is

fW (w) =
Γ(p+q

2
)

Γ(p
2
)Γ( q

2
)

(
p

q

)p/2
w

p
2
−1

[1 + (p
q
)w](p+q)/2

I(w > 0).
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Note: This pdf can be derived in the same way that the t pdf was derived. Apply a
bivariate transformation; i.e., introduce Z = U as a dummy variable, find fW,Z(w, z), and
then integrate over z.

Moments: If W ∼ Fp,q, then

E(W ) =
q

q − 2
, if q > 2

var(W ) = 2

(
q

q − 2

)2
p+ q − 2

p(q − 4)
, if q > 4.

Proof. Exercise.

Application: Suppose we have independent random samples

X1, X2, ..., Xn ∼ iid N (µX , σ
2
X)

Y1, Y2, ..., Ym ∼ iid N (µY , σ
2
Y ).

We know
(n− 1)S2

X

σ2
X

∼ χ2
n−1 and

(m− 1)S2
Y

σ2
Y

∼ χ2
m−1.

Also, these quantities are independent (because the samples are; therefore, S2
X ⊥⊥ S2

Y ).
Therefore,

W =

(n− 1)S2
X

σ2
X

/
(n− 1)

(m− 1)S2
Y

σ2
Y

/
(m− 1)

=

(
S2
X

S2
Y

)
σ2
Y

σ2
X

∼ Fn−1,m−1.

Furthermore, if σ2
X = σ2

Y (perhaps an assumption under some H0), then S2
X/S

2
Y ∼ Fn−1,m−1.

In this case,

E

(
S2
X

S2
Y

)
=
m− 1

m− 3
≈ 1.

Therefore, if σ2
X = σ2

Y , we would expect the ratio of the sample variances to be close to 1
(especially if m is large).

Theorem 5.3.8.

(a) If X ∼ Fp,q, then Y = 1/X ∼ Fq,p.

(b) If X ∼ tq, then Y = X2 ∼ F1,q.

(c) If X ∼ Fp,q, then

Y =
(p
q
)X

1 + (p
q
)X
∼ beta

(p
2
,
q

2

)
.

Note: The first two results above are important in analysis of variance and regression. The
result in part (c) is useful when estimating a binomial success probability.
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5.4 Order Statistics

Definition: The order statistics of an iid sample X1, X2, ..., Xn are the ordered values of
the sample. They are denoted by X(1) ≤ X(2) ≤ · · · ≤ X(n); i.e.,

X(1) = min
1≤i≤n

Xi

X(2) = second smallest Xi

...

X(n) = max
1≤i≤n

Xi.

Remark: Many statistics seen in practice are order statistics or functions of order statistics.
For example,

• T (X) = X(n+1
2

), the sample median (n odd)

• T (X) = X(n) −X(1), the sample range

• T (X) = 1
2
(X(1) +X(n)), the sample midrange.

Revelation: Because order statistics are statistics (i.e., they are functions of X1, X2, ..., Xn),
they have their own (sampling) distributions! This section is dedicated to studying these
distributions.

Note: We will examine the discrete and continuous cases separately. In general, “ties”
among order statistics are possible when the population distribution fX(x) is discrete; ties
are not possible theoretically when fX(x) is continuous.

Theorem 5.4.3. Suppose X1, X2, ..., Xn is an iid sample from a discrete distribution with
pmf fX(xi) = pi, where x1 < x2 < · · · < xi < · · · are the possible values of X listed in
ascending order. Define P0 = 0,

P1 = p1, P2 = p1 + p2, ..., Pi = p1 + p2 + · · ·+ pi, ...

Let X(1) ≤ X(2) ≤ · · · ≤ X(n) denote the order statistics from the sample. Then

P (X(j) ≤ xi) =
n∑
k=j

(
n

k

)
P k
i (1− Pi)n−k

and

P (X(j) = xi) =
n∑
k=j

(
n

k

)[
P k
i (1− Pi)n−k − P k

i−1(1− Pi−1)n−k
]
.

Proof. Let Y denote the number of Xj’s (among X1, X2, ..., Xn) that are less than or equal
to xi. The key point to realize is that

{X(j) ≤ xi} = {Y ≥ j}.

Furthermore, Y ∼ b(n, Pi). To see why, consider each Xj as a “trial:”

PAGE 154



STAT 712: CHAPTER 5 JOSHUA M. TEBBS

• if Xj ≤ xi, then call this a “success”

• if Xj > xi, then call this a “failure.”

Note that Y simply counts the number of “successes” out of these n Bernoulli trials. The
probability of a “success” on any one trial is

P (Xj ≤ xi) = p1 + p2 + · · ·+ pi = Pi.

Therefore,

P (X(j) ≤ xi) = P (Y ≥ j)

=
n∑
k=j

(
n

k

)
P k
i (1− Pi)n−k.

The expression for P (X(j) = xi) is simply P (X(j) ≤ xi)− P (X(j) ≤ xi−1). The definition of
P0 = 0 takes care of the i = 1 case. 2

Example 5.7. Suppose X1, X2, ..., Xn are iid Bernoulli(θ), where 0 < θ < 1. Find E(X(j)).
Solution. Recall that the Bernoulli (population) pmf can be written as

fX(x) =


p1 = 1− θ, x = x1 = 0
p2 = θ, x = x2 = 1

0, otherwise.

Using the notation defined in Theorem 5.4.3, we have P0 = 0, P1 = p1 = 1 − θ, and
P2 = p1 + p2 = (1− θ) + θ = 1. The random variable X(j) is binary (0-1). Therefore,

E(X(j)) = P (X(j) = 1) = 1− P (X(j) = 0)

= 1− P (X(j) ≤ 0)

= 1−
n∑
k=j

(
n

k

)
(1− θ)kθn−k.

For example, if θ = 0.2 and n = 25, then E(X(13)) ≈ 0.000369. Note that X(13) is the sample
median if n = 25.

Exercise: Suppose that X1, X2, ..., X10 are iid Poisson with mean λ = 2.2. Calculate E(X(j))
for j = 1, 2, ..., 10. Compare each with E(Xj) = 2.2.

Theorem 5.4.4. Suppose X1, X2, ..., Xn is an iid sample from a continuous distribution
with pdf fX(x) and cdf FX(x). Let X(1) < X(2) < · · · < X(n) denote the order statistics.
The pdf of X(j), for j = 1, 2, ..., n, is given by

fX(j)
(x) =

n!

(j − 1)!(n− j)!
[FX(x)]j−1fX(x)[1− FX(x)]n−j.
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Two special cases:

• j = 1. The pdf of X(1), the minimum order statistic, collapses to

fX(1)
(x) = nfX(x)[1− FX(x)]n−1.

• j = n. The pdf of X(n), the maximum order statistic, collapses to

fX(n)
(x) = nfX(x)[FX(x)]n−1.

The formulae for these special cases should be committed to memory.

Proof of Theorem 5.4.4. Let FX(j)
(x) = P (X(j) ≤ x) denote the cdf of X(j). Let Y denote

the number of Xi’s that are less than or equal to x. As in the discrete case, {X(j) ≤ x} =
{Y ≥ j}. Furthermore, Y ∼ b(n, FX(x)). To see why, consider each Xi as a “trial:”

• if Xi ≤ x, then call this a “success”

• if Xi > x, then call this a “failure.”

Note that Y simply counts the number of “successes” out of these n Bernoulli trials. The
probability of a “success” on any one trial is P (Xi ≤ x) = FX(x). Therefore,

FX(j)
(x) = P (X(j) ≤ x) = P (Y ≥ j)

=
n∑
k=j

(
n

k

)
[FX(x)]k[1− FX(x)]n−k.

The pdf of X(j) is given by

fX(j)
(x) =

d

dx
FX(j)

(x)

=
d

dx

n∑
k=j

(
n

k

)
[FX(x)]

k[1− FX(x)]
n−k

=

n∑
k=j

(
n

k

)
d

dx
[FX(x)]

k[1− FX(x)]
n−k

=

n∑
k=j

(
n

k

){
k[FX(x)]

k−1fX(x)[1− FX(x)]
n−k − [FX(x)]

k(n− k)[1− FX(x)]
n−k−1fX(x)

}
=

(
n

j

)
j[FX(x)]

j−1fX(x)[1− FX(x)]
n−j + a− b,

where

a =
n∑

k=j+1

(
n

k

)
k[FX(x)]k−1fX(x)[1− FX(x)]n−k

b =
n∑
k=j

(
n

k

)
[FX(x)]k(n− k)[1− FX(x)]n−k−1fX(x).
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Note that the expression above(
n

j

)
j[FX(x)]j−1fX(x)[1− FX(x)]n−j =

n!

(j − 1)!(n− j)!
[FX(x)]j−1fX(x)[1− FX(x)]n−j

is the desired result. Therefore, it suffices to show that a− b = 0. Re-index the a sum and
re-write the b sum as

a =
n−1∑
k=j

(
n

k + 1

)
(k + 1)[FX(x)]kfX(x)[1− FX(x)]n−k−1

b =
n−1∑
k=j

(
n

k

)
(n− k)[FX(x)]kfX(x)[1− FX(x)]n−k−1.

To establish that a− b = 0, simply note that(
n

k + 1

)
(k + 1) =

n!

(k + 1)!(n− k − 1)!
(k + 1)

=
n!

k!(n− k − 1)!

=
n!

k!(n− k)!
(n− k) =

(
n

k

)
(n− k). 2

Conceptualization: There is an easy way to remember

fX(j)
(x) =

n!

(j − 1)!(n− j)!
[FX(x)]j−1fX(x)[1− FX(x)]n−j.

Think of each of X1, X2, ..., Xn as a “trial,” and consider the trinomial distribution with the
following categories:

Category Description Cell probability # Observations
1 Less than x p1 = P (X < x) = FX(x) j − 1
2 Equal to x p2 = P (X = x) = “fX(x)” 1
3 Greater than x p3 = P (X > x) = 1− FX(x) n− j

Therefore, we can remember the formula for fX(j)
(x) by linking it to the trinomial distribution

(see Section 4.6 in the notes). The constant

n!

(j − 1)!(n− j)!
=

n!

(j − 1)!1!(n− j)!

is the corresponding trinomial coefficient; it counts the number of ways the Xi’s can fall in
the three distinct categories.
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Example 5.8. Suppose that X1, X2, ..., Xn are iid U(0, 1). Find the pdf of X(j), the jth
order statistic.
Solution. Recall that the population pdf and cdf are

fX(x) = I(0 < x < 1) and FX(x) =


0, x ≤ 0
x, 0 < x < 1
1, x ≥ 1.

The pdf of X(j) is, for 0 < x < 1,

fX(j)
(x) =

n!

(j − 1)!(n− j)!
xj−1(1)(1− x)n−j

=
Γ(n+ 1)

Γ(j)Γ(n− j + 1)
xj−1(1− x)(n−j+1)−1;

i.e., X(j) ∼ beta(j, n− j + 1).

Example 5.9. Suppose that X1, X2, ..., Xn are iid exponential(β), where β > 0. Recall that
the exponential pdf and cdf are

fX(x) =
1

β
e−x/βI(x > 0) and FX(x) =

{
0, x ≤ 0

1− e−x/β, x > 0.

The pdf of X(1) is

fX(1)
(x) = nfX(x)[1− FX(x)]n−1

x>0
= n

1

β
e−x/β [1− (1− e−x/β)]n−1

=
n

β
e−nx/βI(x > 0),

that is, X(1) ∼ exponential(β/n). The pdf of X(n) is

fX(n)
(x) = nfX(x)[FX(x)]n−1

=
n

β
e−x/β(1− e−x/β)n−1I(x > 0).

The pdfs of X(1) and X(n) are depicted in Figure 5.2 for n = 10 and β = 2.

Theorem 5.4.6. Suppose X1, X2, ..., Xn is an iid sample from a continuous distribution
with pdf fX(x) and cdf FX(x). Let X(1) < X(2) < · · · < X(n) denote the order statistics.
The joint pdf of (X(i), X(j)), i < j, is given by

fX(i),X(j)
(u, v) =

n!

(i− 1)!(j − 1− i)!(n− j)!
[FX(u)]i−1fX(u)[FX(v)− FX(u)]j−1−i

× fX(v)[1− FX(v)]n−j,

for −∞ < u < v <∞.
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Figure 5.2: Order statistic distributions. X1, X2, ..., X10 ∼ iid exponential(β = 2). Left: Pdf
of X(1). Right: Pdf of X(10). Note that the horizontal axes are different in the two figures.

Remark: For a rigorous derivation of this result, see Exercise 5.26 (CB, pp 260). For
a heuristic argument, we can again link the formula for fX(i),X(j)

(u, v) to the multinomial
distribution:

Category Description Cell probability # Observations
1 Less than u p1 = FX(u) i− 1
2 Equal to u p2 = “fX(u)” 1
3 Between u and v p3 = FX(v)− FX(u) j − 1− i
4 Equal to v p4 = “fX(v)” 1
5 Greater than v p5 = 1− FX(v) n− j

Special case: The joint pdf of (X(1), X(n)) is given by

fX(1),X(n)
(u, v) = n(n− 1)fX(u)[FX(v)− FX(u)]n−2fX(v),

for −∞ < u < v <∞.

Example 5.10. Suppose that X1, X2, ..., Xn are iid U(0, 1). Find the pdf of the sample
range R = X(n) −X(1).
Solution. The first step is to find the joint pdf of X(1) and X(n); this is given by

fX(1),X(n)
(u, v) = n(n− 1)(v − u)n−2I(0 < u < v < 1).
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Now consider the bivariate transformation

R = g1(X(1), X(n)) = X(n) −X(1)

S = g2(X(1), X(n)) = X(n).

Note that the support of (R, S) is B = {(r, s) : 0 < r < s < 1}. The transformation above
is one-to-one, so the inverse transformation exists and is given by

x(1) = g−1
1 (r, s) = s− r

x(n) = g−1
2 (r, s) = s.

The Jacobian of the (inverse) transformation is

J = det

∣∣∣∣∣∣∣
∂g−1

1 (r, s)

∂r

g−1
1 (r, s)

∂s
∂g−1

2 (r, s)

∂r

∂g−1
2 (r, s)

∂s

∣∣∣∣∣∣∣ = det

∣∣∣∣ −1 1
0 1

∣∣∣∣ = −1.

Therefore, the joint pdf of (R, S) is, for all (r, s) ∈ B,

fR,S(r, s) = fX(1),X(n)
(g−1

1 (r, s), g−1
2 (r, s))|J |

= n(n− 1)[s− (s− r)]n−2

= n(n− 1)rn−2I(0 < r < s < 1).

The marginal pdf of R is therefore

fR(r) =

∫ 1

r

n(n− 1)rn−2ds

= n(n− 1)rn−2(1− r)I(0 < r < 1)

=
Γ(n+ 1)

Γ(n− 1)Γ(2)
r(n−1)−1(1− r)2−1I(0 < r < 1),

a beta pdf with parameters n− 1 and 2, that is, R ∼ beta(n− 1, 2).

Result: Suppose X1, X2, ..., Xn is an iid sample from a continuous distribution with pdf
fX(x). The joint distribution of the n order statistics is

fX(1),X(2),...,X(n)
(x1, x2, ..., xn) = n!fX(x1)fX(x2) · · · fX(xn),

for −∞ < x1 < x2 < · · · < xn <∞.

Q: We know (by assumption) that X1, X2, ..., Xn are iid. Are X(1), X(2), ..., X(n) also iid?
A: No. Clearly, X(1), X(2), ..., X(n) are dependent; i.e., look at the support! Also, the marginal
distribution of each order statistic is different. Therefore, the order statistics are neither
independent nor identically distributed.
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5.5 Convergence Concepts

Remark: In some problems, exact distributional results may not be available. By “exact,”
we mean “finite sample;” i.e., results that are applicable for any fixed sample size n.

• In Example 5.10, the sample range R ∼ beta(n− 1, 2). This is an exact result.

When exact results are not available, we may be able to gain insight by examining the
stochastic behavior as the sample size n becomes infinitely large. These are called “large
sample” or “asymptotic” results.

Q: Why bother? Large sample results are technically valid only under the assumption that
n→∞. This is not realistic.
A: Because finite sample results are often not available (or they are intractable), and large
sample results can offer a good approximation to them when n is “large.”

Example 5.11. Suppose X1, X2, ..., Xn are iid exponential(θ), where θ > 0, and let

Xn =
1

n

n∑
i=1

Xi,

the sample mean based on n observations. An easy mgf argument (see Example 5.3 in the
notes) shows that

Xn ∼ gamma(n, θ/n).

This is an exact result; it is true for any finite sample size n. Later, we will use the Central
Limit Theorem to show that

√
n(Xn − θ)

d−→ N (0, θ2),

as n→∞. In other words,
Xn ∼ AN (θ, θ2/n)

for large n. The acronym “AN ” is read “approximately normal.”

Remark: In Example 5.11, the exact distribution of Xn is available and is easy to derive.
In other situations, it may not be. For example, what if X1, X2, ..., Xn were iid beta? iid
Bernoulli? iid lognormal?

Review: Suppose (xn)∞n=1 is a sequence of real numbers. We say that “xn converges to x”
and write

lim
n→∞

xn = x or xn → x, as n→∞,

if ∀ε > 0 ∃n0(ε) ≥ 1 3 |xn − x| < ε ∀n ≥ n0(ε). This means that every open neighborhood
of x contains all but a finite number of the full sequence (xn)∞n=1.

Remark: The definition above is a statement about non-stochastic convergence. Non-
stochastic means “not random;” i.e., the x’s are real numbers (to us, fixed constants). On
the other hand, stochastic convergence involves random variables. Interestingly, showing
stochastic convergence often boils down to showing non-stochastic convergence.
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5.5.1 Convergence in probability

Definition: We say that a sequence of random variables X1, X2, ..., converges in proba-
bility to a random variable X and write Xn

p−→ X if ∀ε > 0,

lim
n→∞

P (|Xn −X| ≥ ε) = 0,

that is, P (|Xn −X| ≥ ε)→ 0, as n→∞. An equivalent definition is

lim
n→∞

P (|Xn −X| < ε) = 1;

i.e., P (|Xn −X| < ε)→ 1, as n→∞.

• For ε > 0, quantities like P (|Xn − X| ≥ ε) and P (|Xn − X| < ε) are real numbers.
Therefore, convergence in probability deals with the non-stochastic convergence of
these sequences of real numbers.

• Informally, Xn
p−→ X means the probability of the event

{|Xn −X| ≥ ε} = {“Xn stays away from X”}

gets small as n gets large.

• In most statistical applications, the limiting random variable X is a constant.

Example 5.12. Suppose X1, X2, ..., Xn are iid exponential(θ), where θ > 0. Show that

Xn
p−→ θ, as n→∞.

Solution. Suppose ε > 0. Recalling that Xn ∼ gamma(n, θ/n), it would suffice to show that

P (|Xn − θ| < ε) = P (−ε < Xn − θ < ε)

= P (θ − ε < Xn < θ + ε)

=

∫ θ+ε

θ−ε

1

Γ(n)( θ
n
)n
xn−1e−nx/θ︸ ︷︷ ︸

gamma(n,θ/n) pdf

dx → 1, as n→∞.

Unfortunately, it is not clear how to do this. Alternatively, we could try to show that
P (|Xn− θ| ≥ ε)→ 0, as n→∞. This is easier to show. Recall that by Markov’s Inequality,

P (|Xn − θ| ≥ ε) = P ((Xn − θ)2 ≥ ε2)

≤ E[(Xn − θ)2]

ε2
=

var(Xn)

ε2
=

θ2

nε2
→ 0,

as n→∞. We have used Markov’s Inequality to bound P (|Xn−θ| ≥ ε) above by a sequence

that is converging to zero. Therefore, P (|Xn−θ| ≥ ε)→ 0 as well; i.e., Xn
p−→ θ, as n→∞.

Note: Example 5.12 is a special case of a general result known as the Weak Law of Large
Numbers (WLLN).
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Theorem 5.5.2 (WLLN). Suppose that X1, X2, ..., Xn is an iid sequence of random variables
with E(X1) = µ and var(X1) = σ2 <∞. Let

Xn =
1

n

n∑
i=1

Xi

denote the sample mean. Then Xn
p−→ µ, as n→∞.

Proof. Suppose ε > 0. By Markov’s Inequality,

P (|Xn − µ| ≥ ε) = P ((Xn − µ)2 ≥ ε2)

≤ E[(Xn − µ)2]

ε2
=

var(Xn)

ε2
=

σ2

nε2
→ 0. 2

Remark: In the version of the WLLN stated in Theorem 5.5.2, we assumed finite variances;
i.e., that E(X2

1 ) < ∞. Can we weaken this assumption? It turns out that the WLLN still
holds for iid sequences as long as E(|X1|) <∞, i.e., the first moment is finite (this is called
Khintchine’s WLLN). Of course, the proof of this version is more difficult.

Remark: The WLLN guarantees that Xn
p−→ µ, as n→∞. Does a similar result hold for

S2, the sample variance? That is, does S2 p−→ σ2, as n→∞?
A: Yes, in most cases. Suppose ε > 0. From Markov’s Inequality,

P (|S2 − σ2| ≥ ε) ≤ E[(S2 − σ2)2]

ε2
=

var(S2)

ε2
.

Therefore, a sufficient condition for S2 p−→ σ2 is that var(S2)→ 0, as n→∞. Recall that

var(S2) =
1

n

[
µ4 −

(
n− 3

n− 1

)
σ4

]
,

where µ4 = E[(X−µ)4] is the fourth central moment of X. Therefore, the sufficient condition

var(S2) → 0 requires finite fourth moments; i.e., E(X4
1 ) < ∞. However, S2 p−→ σ2 under

the weaker assumption of E(X2
1 ) <∞.

Remark: When the limiting random variable is a constant, convergence in probability is
sometimes referred to as “consistency” (or “weak consistency”). We might say, “Xn is a
consistent estimator of µ” and “S2 is a consistent estimator of σ2.”

Example 5.13. Suppose X1, X2, ..., Xn are iid with continuous cdf FX . Let

F̂n(x) =
1

n

n∑
i=1

I(Xi ≤ x)

denote the empirical distribution function (edf). The edf is a non-decreasing step
function that takes steps of size 1/n at each observed Xi. By the WLLN,

F̂n(x) =
1

n

n∑
i=1

I(Xi ≤ x)
p−→ E[I(X1 ≤ x)] = P (X1 ≤ x) = FX(x).
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Figure 5.3: Empirical distribution functions F̂n(x) calculated from X1, X2, ..., Xn iid N (0, 1).
Upper left: n = 10. Upper right: n = 50. Lower left: n = 100. Lower right: n = 250. The
N (0, 1) cdf is superimposed on each subfigure.

That is, F̂n(x)
p−→ FX(x) at each fixed x ∈ R. In a sense, we can think of the edf F̂n(x)

as an “estimate” of the population cdf FX(x). Figure 5.3 depicts the edf F̂n(x) calculated
when X1, X2, ..., Xn are iid N (0, 1) for different values of n.

Continuity: Suppose Xn
p−→ X and let h : R → R be a continuous function. Then

h(Xn)
p−→ h(X). In other words, convergence in probability is preserved under continuous

mappings.
Proof. Suppose Xn

p−→ X. Suppose ε > 0. Because h is continuous, ∃δ(ε) > 0 such that
|xn−x| < δ(ε) =⇒ |h(xn)−h(x)| < ε (this is the definition of continuity). Define the events

A = {x : |xn − x| < δ(ε)}
B = {x : |h(xn)− h(x)| < ε}
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and note that A ⊆ B. Therefore, by monotonicity of P ,

P (|Xn −X| < δ(ε)) = P (Xn ∈ A) ≤ P (Xn ∈ B) = P (|h(Xn)− h(X)| < ε).

However, because Xn
p−→ X, this means that P (|Xn −X| < δ(ε))→ 1, as n→∞. Clearly,

P (|h(Xn)− h(X)| < ε)→ 1 as well. Because ε > 0 was arbitrary, we are done. 2

Remark: In Example 5.12, we showed that Xn
p−→ θ. This means that

X
2

n

p−→ θ2, eXn
p−→ eθ, and sinXn

p−→ sin θ.

Note that h1(x) = x2, h2(x) = ex, h3(x) = sinx are each continuous functions on R+.

Example 5.14. Suppose X1, X2, ..., Xn are iid Bernoulli(p), where 0 < p < 1. Let

p̂ =
1

n

n∑
i=1

Xi,

denote the sample proportion. Because E(X1) = p <∞, it follows from the WLLN that

p̂
p−→ p, as n→∞. By continuity,

ln

(
p̂

1− p̂

)
p−→ ln

(
p

1− p

)
.

The quantity ln[p/(1−p)] is the log-odds of p. Note that h(x) = ln[x/(1−x)] is a continuous
function over (0, 1).

Useful Results: Suppose Xn
p−→ X and Yn

p−→ Y . Then

(a) cXn
p−→ cX, for c 6= 0

(b) Xn ± Yn
p−→ X ± Y

(c) XnYn
p−→ XY

(d) Xn/Yn
p−→ X/Y , provided that P (Y = 0) = 0.

Proof. To prove part (a), suppose Xn
p−→ X and suppose ε > 0. Note that

P (|cXn − cX| ≥ ε) = P (|c||Xn −X| ≥ ε) = P (|Xn −X| ≥ ε/|c|).

However, P (|Xn − X| ≥ ε/|c|) → 0 because Xn
p−→ X, by assumption. Because ε > 0

was arbitrary, part (a) holds. I will next prove the “+” version of part (b) and leave the

remaining parts as exercises. Suppose Xn
p−→ X and Yn

p−→ Y and suppose ε > 0. From
the Triangle Inequality,

|Xn + Yn − (X + Y )| = |Xn −X + Yn − Y | ≤ |Xn −X|+ |Yn − Y |.

PAGE 165



STAT 712: CHAPTER 5 JOSHUA M. TEBBS

Therefore,

P (|Xn + Yn − (X + Y )| ≥ ε) ≤ P (|Xn −X|+ |Yn − Y | ≥ ε)

≤ P (|Xn −X| ≥ ε/2) + P (|Yn − Y | ≥ ε/2),

the last step following from Boole’s Inequality and monotonicity of P . However, because
Xn

p−→ X and Yn
p−→ Y , we know P (|Xn − X| ≥ ε/2) → 0 and P (|Yn − Y | ≥ ε/2) → 0.

Because ε > 0 was arbitrary, we are done. 2

Remark: Convergence in probability generally can be established by using one of these
approaches.

Approach 1: Appeal to the definition directly; that is, show

P (|Xn −X| ≥ ε)→ 0 or P (|Xn −X| < ε)→ 1.

This approach is particularly useful when Xn is a sequence of order statistics (e.g., X(1),
X(n), etc.) and the limiting random variable X is a constant.

Example 5.15. Suppose X1, X2, ..., Xn are iid U(0, θ), where θ > 0. Show that X(n)
p−→ θ.

Solution. Recall that the U(0, θ) pdf and cdf are

fX(x) =
1

θ
I(0 < x < θ) and FX(x) =


0, x ≤ 0
x

θ
, 0 < x < θ

1, x ≥ θ.

The cdf of X(n) is

FX(n)
(x) = P (X(n) ≤ x)

= P (X1 ≤ x,X2 ≤ x, ..., Xn ≤ x)
indep
= P (X1 ≤ x)P (X2 ≤ x) · · ·P (Xn ≤ x)

ident
= [P (X1 ≤ x)]n

= [FX(x)]n =
(x
θ

)n
, for 0 < x < θ.

Therefore,

FX(n)
(x) =


0, x ≤ 0(x
θ

)n
, 0 < x < θ

1, x ≥ θ.

Suppose ε > 0. By direct calculation, we have

P (|X(n) − θ| < ε) = P (−ε < X(n) − θ < ε)

= P (θ − ε < X(n) < θ + ε)

= FX(n)
(θ + ε)︸ ︷︷ ︸

= 1

− FX(n)
(θ − ε) = 1−

(
θ − ε
θ

)n
→ 1.
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Approach 2: When the limiting random variable is a constant, say c, use Markov’s Inequal-
ity; i.e., for r ≥ 1,

P (|Xn − c| ≥ ε) ≤ E(|Xn − c|r)
εr

and show the RHS converges to 0 as n→∞. The most common case is r = 2, so that

E[(Xn − c)2] = var(Xn) + [E(Xn)− c]2

= var(Xn) + [Bias(Xn)]2.

Therefore, it suffices to show that both var(Xn) and Bias(Xn) converge to 0.

Example 5.16. Suppose X1, X2, ..., Xn are iid N (µ, σ2), where −∞ < µ <∞ and σ2 > 0.
Define

S2
n =

1

n

n∑
i=1

(Xi −X)2.

Show that S2
n

p−→ σ2, as n→∞.
Solution. It suffices to show that var(S2

n) and Bias(S2
n) converge to 0. First note that

S2
n =

1

n

n∑
i=1

(Xi −X)2 =

(
n− 1

n

)
1

n− 1

n∑
i=1

(Xi −X)2 =

(
n− 1

n

)
S2,

where S2 is the “usual” sample variance (with denominator n− 1). Therefore,

E(S2
n) = E

[(
n− 1

n

)
S2

]
=

(
n− 1

n

)
E(S2) =

(
n− 1

n

)
σ2

var(S2
n) = var

[(
n− 1

n

)
S2

]
=

(
n− 1

n

)2

var(S2) =

(
n− 1

n

)2
2σ4

n− 1
=

2(n− 1)σ4

n2
→ 0.

Also,

Bias(S2
n) = E(S2

n − σ2) =

(
n− 1

n

)
σ2 − σ2 = −σ

2

n
→ 0.

Approach 3: Use continuity of convergence results in conjunction with the WLLN. This
approach is widely used and often allows the weakest assumptions. The following lemma
can be useful when making this type of argument.

Lemma: Suppose Xn
p−→ X and cn → c, as n→∞. Then cnXn

p−→ cX.
Proof. Exercise.

Example 5.17. Suppose X1, X2, ..., Xn are iid with E(X4
1 ) < ∞. Consider the “usual”

sample variance

S2 =
1

n− 1

n∑
i=1

(Xi −X)2 =
n

n− 1

(
1

n

n∑
i=1

X2
i −X

2

n

)
.
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From the WLLN, we have
1

n

n∑
i=1

X2
i

p−→ E(X2
1 ).

Also from the WLLN, we have Xn
p−→ E(X1), so X

2

n

p−→ [E(X1)]2, by continuity. Let
cn = n/(n− 1) and observe that cn → 1, as n→∞. From the previous lemma, we have

S2 = cn

(
1

n

n∑
i=1

X2
i −X

2

n

)
p−→ 1× {E(X2

1 )− [E(X1)]2} = var(X1) = σ2.

This shows that S2 p−→ σ2 (i.e., S2 is a consistent estimator of σ2) under finite fourth moment
assumptions. This actually remains true for iid samples under finite second moments.

Approach 4: Show that Xn
d−→ c; i.e., that Xn converges in distribution to a random

variable whose distribution is degenerate at the constant c. This approach “works” because

Xn
d−→ c =⇒ Xn

p−→ c

when the limiting random variable is a constant (it is not true otherwise).

Remark: We have already seen an illustration of this approach in Example 2.19 (pp 56
notes). We showed MXn(t)→MX(t) where the limiting random variable X had a distribu-
tion that was degenerate at the constant β. That is, the cdf of X was

FX(x) =

{
0, x < β
1, x ≥ β.

Therefore, Xn
d−→ β and hence Xn

p−→ β.

5.5.2 Almost sure convergence

Definition: Suppose that (S,B, P ) is a probability space. We say that a sequence of random
variables X1, X2, ..., converges almost surely to a random variable X and write Xn

a.s.−→ X
if ∀ε > 0,

P
(

lim
n→∞

|Xn −X| < ε
)

= P
({
ω ∈ S : lim

n→∞
|Xn(ω)−X(ω)| < ε

})
= 1.

Remark: The set {
ω ∈ S : lim

n→∞
|Xn(ω)−X(ω)| < ε

}
is the set of all outcomes ω ∈ S where Xn(ω) → X(ω). Note that Xn(ω) is a sequence of
real numbers for each ω ∈ S. Therefore, if this sequence of real numbers Xn(ω) converges
to X(ω), also a real number, for almost all ω ∈ S, then Xn

a.s.−→ X. By “almost all,”
we concede that there may exist a set N ⊂ S where convergence does not occur; i.e.,
Xn(ω) 6→ X(ω), for all ω ∈ N . However, the set N has probability 0; i.e., P (N) = 0.
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Remark: Almost sure convergence is a very strong form of convergence (often, much
stronger than is needed). In fact, the following result holds:

Xn
a.s.−→ X =⇒ Xn

p−→ X.

That is, almost sure convergence implies convergence in probability. The converse is not
true in general; see Example 5.5.8 (CB, pp 234).

Theorem 5.5.9 (SLLN). Suppose that X1, X2, ..., Xn is an iid sequence of random variables
with E(X1) = µ and var(X1) = σ2 <∞. Let

Xn =
1

n

n∑
i=1

Xi

denote the sample mean. Then Xn
a.s.−→ µ, as n→∞.

Continuity: Suppose Xn
a.s−→ X and let h : R → R be a continuous function. Then

h(Xn)
a.s.−→ h(X). In other words, almost sure convergence is preserved under continuous

mappings.
Proof. Suppose Xn

a.s.−→ X and let S0 = {ω ∈ S : Xn(ω) → X(ω)}. Because Xn
a.s.−→ X, we

know that P (S0) = 1. Because h is continuous, h(Xn(ω)) → h(X(ω)) for all ω ∈ S0. We
have shown that h(Xn(ω))→ h(X(ω)) for almost all ω ∈ S. Thus, we are done. 2

Conceptualization: Suppose θ̂n is a sequence of estimators for an unknown param-
eter, say θ. We can think of updating the value of θ̂n as data become available (e.g.,

X1, X2, X3, ...). One might wish that θ̂n become “close” to θ when n is sufficiently large
and then never “wander away” again after further data collection. Almost sure convergence
guarantees this. Convergence in probability does not; it guarantees only that the probability
θ̂n “wanders away” becomes small. This may seem like an argument against convergence in
probability. However, in practice (i.e., to establish many useful asymptotic results), conver-
gence in probability is all we will ever need. In many ways, this should not be surprising.
After all, statisticians tend to think in terms of probability rather than in terms of absolutes.

5.5.3 Convergence in distribution

Definition: We say that a sequence of random variables X1, X2, ..., converges in distri-

bution to a random variable X and write Xn
d−→ X if the sequence of cdfs

FXn(x)→ FX(x),

as n→∞, for all x ∈ CFX , the set of points x ∈ R where FX(·) is continuous.

Remark: When we talk about convergence in distribution, we write Xn
d−→ X. However, it

is important to remember that it is not the random variables themselves that are converging.
It is the cdfs FXn(x) that are (pointwise at all continuity points of FX). Mathematically,
∀ε > 0 ∀x ∈ CFX ∃n0(ε, x) ≥ 1 3 |FXn(x)− FX(x)| < ε ∀n ≥ n0(ε, x).
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Example 5.18. Suppose Y1, Y2, ..., Yn are iid exponential random variables with mean
E(Y ) = 1; i.e., the pdf of Y is fY (y) = e−yI(y > 0). Define

Xn = Y(n) − lnn,

where Y(n) = max1≤i≤n Yi, the maximum order statistic. Show that Xn converges in distri-
bution and find the (limiting) distribution.
Solution. The cdf of Y is

FY (y) =

{
0, y ≤ 0

1− e−y, y > 0.

The cdf of Y(n) is

FY(n)(y) = P (Y(n) ≤ y)
iid
= [P (Y1 ≤ y)]n

= [FY (y)]n

= (1− e−y)n, for y > 0.

The cdf of Xn = Y(n) − lnn is

FXn(x) = P (Xn ≤ x) = P (Y(n) ≤ x+ lnn)

= FY(n)(x+ lnn)

=
[
1− e−(x+lnn)

]n
=

(
1− e−x

n

)n
→ exp(−e−x) = FX(x),

as n → ∞. This is the cdf of a (standard) Gumbel random variable. Note that FX(x) is
continuous on R and also that FXn(x)→ FX(x) for all x ∈ R.

Continuity: Suppose Xn
d−→ X and let h : R → R be a continuous function. Then

h(Xn)
d−→ h(X). In other words, convergence in distribution is preserved under continuous

mappings.

Example: Suppose Xn
d−→ X, where X ∼ N (0, 1). Because h(x) = x2 is continuous,

X2
n

d−→ χ2
1. Recall that X ∼ N (0, 1) =⇒ X2 ∼ χ2

1.

Remark: One of the most common approaches to showing Xn
d−→ X is to use moment

generating functions. In a more advanced course, we might use characteristic functions.
Lévy’s Continuity Theorem on characteristic functions says that if Xn ∼ ψXn(t), then

Xn
d−→ X ⇐⇒ ψXn(t)→ ψX(t), for all t ∈ R.

This was actually stated in the Miscellanea section in Chapter 2 (see Theorem 2.6.1, CB,
pp 84). The “mgf version” of this result, that is,

Xn
d−→ X ⇐⇒ MXn(t)→MX(t), for all |t| < h (∃h > 0),

was Theorem 2.3.12 (CB, pp 66). Of course, this result is applicable only when mgfs exist
(characteristic functions, on the other hand, always exist).
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Theorem 5.5.12. Xn
p−→ X =⇒ Xn

d−→ X.

Remark: The converse to Theorem 5.5.12 is not true in general. Suppose that Xn ∼ N (0, 1)

for all n. Suppose that X ∼ N (0, 1). Clearly, Xn
d−→ X. Why? The cdf of Xn is

FXn(x) =

∫ x

−∞

1√
2π
e−u

2/2du = FX(x), for each n.

Trivially, FXn(x)→ FX(x), for all x ∈ R. However, there is no guarantee that Xn will ever be
“close” to X with high probability. For example, if Xn ⊥⊥ X, then Y = Xn −X ∼ N (0, 2).
For ε > 0, P (|Xn −X| < ε) = P (|Y | < ε), a constant. This does not converge to 1.

Remark: The converse to Theorem 5.5.12 is true when the limiting random variable is a
constant (see “Approach 4” in the convergence in probability subsection):

Xn
d−→ c =⇒ Xn

p−→ c.

This is precisely what is stated in Theorem 5.5.13 (CB, pp 236).

Theorem 5.5.14 (Central Limit Theorem, CLT). Suppose X1, X2, ..., is an iid sequence of
random variables with E(X1) = µ and var(X1) = σ2 <∞. Then

Zn =
Xn − µ
σ/
√
n

d−→ N (0, 1), as n→∞.

Remark: Note that

Zn =
Xn − µ
σ/
√
n

=

∑n
i=1Xi − nµ√

nσ
.

Showing this is simple algebra. In more applied courses, it is common to write things like

Xn ∼ AN (µ, σ2/n) or
n∑
i=1

Xi ∼ AN (nµ, nσ2)

for large n. However, do not ever write something like

Xn
d−→ N (µ, σ2/n) or

n∑
i=1

Xi
d−→ N (nµ, nσ2).

These statements are not true, and, in fact, do not even make sense mathematically. Con-
vergence in distribution is a statement about what happens when n→∞. The distribution
in the limit can not depend on n, the quantity that is going off to infinity.

Example 5.19. Suppose X1, X2, ..., Xn are iid χ2
1 so that E(X1) = µ = 1 and var(X1) =

σ2 = 2. The CLT says that

Zn =
Xn − 1√

2/n
=

∑n
i=1 Xi − n√

2n

d−→ N (0, 1), as n→∞.
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Illustration: Suppose n = 100. We would expect the distribution of X100 to be well
approximated by a N (1, 2/100) distribution, or, equivalently, the distribution of

∑100
i=1 Xi to

be well approximated by a N (100, 200) distribution.

Remark: To prove the CLT, we will assume that the mgf of Xi exists. This assumption
is not necessary, but it does make the proof easier. A more general proof would involve
characteristic functions (which always exist).

Proof of Theorem 5.5.14: Let

Zn =
Xn − µ
σ/
√
n
.

We will show MZn(t), the mgf of Zn, converges pointwise to MZ(t) = et
2/2, the mgf of

Z ∼ N (0, 1). Define

Yi =
Xi − µ
σ

,

for i = 1, 2, ..., n, and let MY (t) denote the common mgf of Y .

Notes:

• If the Xi’s are iid, then so are the Yi’s.

• If the mgf of Xi exists for all t ∈ (−h, h) ∃h > 0, then the mgf of Yi exists for all
t ∈ (−σh, σh).

• Note that E(Yi) = 0 and var(Yi) = 1 by construction.

Simple algebra yields

Zn =
Xn − µ
σ/
√
n

=
1√
n

n∑
i=1

Yi.

Therefore,

MZn(t) = E(etZn) = E
(
e

t√
n

∑n
i=1 Yi

)
= E

(
e

t√
n
Y1e

t√
n
Y2 · · · e

t√
n
Yn
)

indep
= E

(
e

t√
n
Y1
)
E
(
e

t√
n
Y2
)
· · ·E

(
e

t√
n
Yn
)

ident
= [E

(
e

t√
n
Y1
)
]n

=
[
MY (t/

√
n)
]n
.

Now write MY (t/
√
n) in its McLaurin series expansion:

MY (t/
√
n) =

∞∑
k=0

M
(k)
Y (0)

(
t√
n
− 0
)k

k!
,

where

M
(k)
Y (0) =

dk

dtk
MY (t)

∣∣∣∣
t=0

.
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Because MY (t) exists ∀t ∈ (−σh, σh), this expansion is valid ∀t ∈ (−
√
nσh,

√
nσh). Now,

M
(0)
Y (0) = MY (0) = 1

M
(1)
Y (0) = E(Y ) = 0

M
(2)
Y (0) = E(Y 2) = 1.

Therefore, the expansion above becomes

MY (t/
√
n) = 1 +

(t/
√
n)2

2!
+RY (t/

√
n),

where the remainder term

RY (t/
√
n) =

∞∑
k=3

M
(k)
Y (0)

(t/
√
n)k

k!
.

To summarize, we have written

MZn(t) =
[
MY (t/

√
n)
]n

=

[
1 +

t2/2

n
+RY (t/

√
n)

]n
=

[
1 +

b

n
+
g(n)

n

]cn
,

where b = t2/2, g(n) = nRY (t/
√
n), and c = 1. It therefore suffices to show that

limn→∞ g(n) = limn→∞ nRY (t/
√
n) = 0, for all t ∈ R. An application of Taylor’s Theo-

rem (see Theorem 5.5.21, CB, pp 241) yields

lim
n→∞

RY (t/
√
n)

(t/
√
n)2

= 0

for t 6= 0 (fixed). Because t is fixed, we also have (for t 6= 0)

0 = lim
n→∞

RY (t/
√
n)

(t/
√
n)2

= lim
n→∞

RY (t/
√
n)

(1/
√
n)2

= lim
n→∞

nRY (t/
√
n).

Also limn→∞ nRY (t/
√
n) = 0 when t = 0 because RY (0) = 0. We have shown that

limn→∞ nRY (t/
√
n) = 0, for all t ∈ R. Thus, we are done. 2

Remark: We have the following important result:

Xn − µ
σ/
√
n

d−→ N (0, 1) ⇐⇒
√
n(Xn − µ)

d−→ N (0, σ2).

Statements like the second statement are commonly seen in asymptotic results. We can
interpret this as follows. If we

1. center Xn by subtracting µ

2. scale Xn − µ up by multiplying by
√
n,
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then
√
n(Xn − µ) converges to a bonafide distribution. The sequence np(Xn − µ) collapses

if p < 1/2 and blows up if p > 1/2. The value p = 1/2 is “just right” to ensure np(Xn − µ)
converges to a nondegenerate distribution with no probability “escaping off” to ±∞.

Example 5.20. Suppose X1, X2, ..., Xn are iid Bernoulli(p), where 0 < p < 1, so that
E(X1) = p and var(X1) = p(1− p). The CLT says that

√
n(Xn − p)

d−→ N (0, p(1− p)),

as n→∞. For the Bernoulli population distribution, the Xi’s are zeros and ones, so Xn is
a sample proportion (i.e., the proportion of ones in the sample). More familiar notation
for the sample proportion is p̂, as presented in Example 5.14 (notes). This result restated is

√
n(p̂− p) d−→ N (0, p(1− p)) ⇐⇒ p̂− p√

p(1−p)
n

d−→ N (0, 1).

5.5.4 Slutsky’s Theorem

Theorem 5.5.17 (Slutsky’s Theorem). Suppose that Xn
d−→ X and Yn

p−→ a, where a is a
constant. Then

(a) YnXn
d−→ aX

(b) Xn + Yn
d−→ X + a.

Example 5.21. Suppose X1, X2, ..., Xn is an iid sample with E(X1) = µ and var(X1) =
σ2 <∞. The CLT says

Xn − µ
σ/
√
n

d−→ N (0, 1),

as n → ∞. Let S2 denote the sample variance. In Example 5.17 (notes), we showed that

S2 p−→ σ2, as n→∞. Because h(x) = σ/
√
x is continuous over R+,

σ

S

p−→ 1.

Therefore, by Slutsky’s Theorem,

Xn − µ
S/
√
n

=
σ

S︸︷︷︸
p−→1

Xn − µ
σ/
√
n︸ ︷︷ ︸

d−→N (0,1)

d−→ N (0, 1).

Note that replacing σ (an unknown parameter) with S (a consistent estimate of σ) does not
affect the asymptotic distribution.

Exercise: Suppose X1, X2, ..., Xn are iid Bernoulli(p), where 0 < p < 1. Show that

p̂− p√
p̂(1−p̂)
n

d−→ N (0, 1).
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5.5.5 Delta Method

Theorem 5.5.24 (Delta Method). Suppose Xn is a sequence of random variables satisfying

√
n(Xn − θ)

d−→ N (0, σ2),

as n→∞. Suppose g : R→ R is differentiable at θ and g′(θ) 6= 0. Then

√
n[g(Xn)− g(θ)]

d−→ N
(
0, [g′(θ)]2σ2

)
,

as n→∞. In other words,

g(Xn) ∼ AN
(
g(θ),

[g′(θ)]2σ2

n

)
, for large n.

Proof. Write g(Xn) in a (stochastic) Taylor series expansion about θ:

g(Xn) = g(θ) + g′(θ)(Xn − θ) +
g′′(ξn)

2
(Xn − θ)2,

where ξn is between Xn and θ. Multiplying by
√
n and then rearranging, we have

√
n[g(Xn)− g(θ)] = g′(θ)

√
n(Xn − θ)︸ ︷︷ ︸
d−→N (0,σ2)

+

√
ng′′(ξn)

2
(Xn − θ)2︸ ︷︷ ︸

= Rn

.

Now,
√
n(Xn − θ)

d−→ N (0, σ2) by assumption so

g′(θ)
√
n(Xn − θ)

d−→ N
(
0, [g′(θ)]2σ2

)
.

Therefore, if we can show Rn
p−→ 0, then the result will follow from Slutsky’s Theorem.

Note that

Rn =
g′′(ξn)

2
(Xn − θ)

√
n(Xn − θ)︸ ︷︷ ︸
d−→N (0,σ2)

.

Provided that g′′(ξn) converges to something finite, we can get Rn
p−→ 0 if we can show

Xn − θ
p−→ 0. Suppose ε > 0. Consider

lim
n→∞

P (|Xn − θ| ≥ ε) = lim
n→∞

P (
√
n|Xn − θ| ≥

√
nε).

We know that
√
n(Xn − θ)

d−→ N (0, σ2) by assumption, so

√
n|Xn − θ| = |

√
n(Xn − θ)|

d−→ |X|,

where X ∼ N (0, σ2), by continuity; note that h(x) = |x| is continuous on R. Because the
distribution of |X| does not have probability “escaping off” to +∞, we have

lim
n→∞

P (|Xn − θ| ≥ ε) = lim
n→∞

P (
√
n|Xn − θ|︸ ︷︷ ︸

d−→|X|

≥
√
nε) = 0.
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Therefore, Xn
p−→ θ. By continuity, Xn − θ

p−→ 0. Finally,

√
n[g(Xn)− g(θ)] = g′(θ)

√
n(Xn − θ)︸ ︷︷ ︸

d−→N (0,[g′(θ)]2σ2)

+

√
ng′′(ξn)

2
(Xn − θ)2︸ ︷︷ ︸
p−→0

.

Applying Slutsky’s to the RHS gives the result. 2

Example 5.22. Suppose X1, X2, ..., Xn are iid Bernoulli(p), where 0 < p < 1. Recall that
the CLT gives √

n(p̂− p) d−→ N (0, p(1− p)),
as n→∞. We now find the asymptotic distribution of the log-odds

g(p̂) = ln

(
p̂

1− p̂

)
,

properly centered and scaled. Note that g(p) is differentiable over 0 < p < 1 and

g(p) = ln

(
p

1− p

)
=⇒ g′(p) =

1

p(1− p)
,

which never equals zero over (0, 1). Therefore, the delta method applies and

√
n

[
ln

(
p̂

1− p̂

)
− ln

(
p

1− p

)]
d−→ N

(
0,

[
1

p(1− p)

]2

p(1− p)

)
d
= N

(
0,

1

p(1− p)

)
,

as n→∞. In other words,

ln

(
p̂

1− p̂

)
∼ AN

(
ln

(
p

1− p

)
,

1

np(1− p)

)
, for large n.

Example 5.23. Suppose X1, X2, ..., Xn are iid Poisson(θ), where θ > 0, so that E(X1) = θ
and var(X1) = θ. The CLT says that

√
n(Xn − θ)

d−→ N (0, θ),

as n→∞. Find a function of Xn, say g(Xn), whose asymptotic variance is free of θ.
Solution. The delta method says that

√
n[g(Xn)− g(θ)]

d−→ N
(
0, [g′(θ)]2θ

)
,

as n → ∞. If we set the large sample variance [g′(θ)]2θ equal to a constant (free of θ), we
can identify the function g that satisfies this equation; that is,

[g′(θ)]2θ
set
= c0 =⇒ [g′(θ)]2 =

c0

θ
=⇒ g′(θ) =

c1√
θ
,
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where c1 =
√
c0 (also free of θ). A solution to this first-order differential equation is

g(θ) =

∫
c1√
θ
dθ = 2c1

√
θ + c2,

where c2 is a constant free of θ. Taking c1 = 1/2 and c2 = 0 yields g(θ) =
√
θ.

Claim: The function g(Xn) =
√
Xn has asymptotic variance that is free of θ.

Proof. We have

g(θ) =
√
θ =⇒ g′(θ) =

1

2
√
θ
,

which never equals zero (because θ > 0). Therefore, the delta method says

√
n

(√
Xn −

√
θ

)
d−→ N

(
0,

[
1

2
√
θ

]2

θ

)
d
= N

(
0,

1

4

)
,

as n→∞. In other words,√
Xn ∼ AN

(√
θ,

1

4n

)
, for large n.

In this example, we see that a square root transformation “stabilizes” the asymptotic
variance of Xn.

Exercise: Suppose X1, X2, ..., Xn are iid Bernoulli(p), where 0 < p < 1. Find a function of
p̂, say g(p̂), whose asymptotic variance is free of p.
Ans : g(p̂) = arcsin

√
p̂.

Theorem 5.5.26 (Second-order Delta Method). Suppose Xn is a sequence of random vari-
ables satisfying √

n(Xn − θ)
d−→ N (0, σ2),

as n→∞. Suppose g : R→ R is twice differentiable at θ, g′(θ) = 0, and g′′(θ) 6= 0. Then

n[g(Xn)− g(θ)]
d−→ σ2

2
g′′(θ)χ2

1

d
= gamma(1/2, σ2g′′(θ)).

Example 5.24. Suppose X1, X2, ..., Xn are iid with E(X1) = µ and var(X1) = σ2 < ∞.
The CLT guarantees that √

n(Xn − µ)
d−→ N (0, σ2),

as n → ∞. Consider g(Xn) = X
2

n. With g(µ) = µ2, we have g′(µ) = 2µ, which is nonzero
except when µ = 0. Therefore, provided that µ 6= 0,

√
n(X

2

n − µ2)
d−→ N (0, 4µ2σ2),
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by the (first-order) delta method. If µ = 0, then the previous asymptotic distribution
collapses. However, we can apply the second-order delta method. Note that g′′(µ) = 2 and
therefore (when µ = 0),

n(X
2

n − µ2) = nX
2

n
d−→ σ2χ2

1

d
= gamma(1/2, 2σ2).

5.5.6 Multivariate extensions

Remark: We now briefly discuss asymptotic results for multivariate random vectors. All
convergence concepts can be extended to handle sequences of random vectors.

Central Limit Theorem: Suppose X1,X2, ..., is a sequence of iid random vectors (of
dimension k) with E(X1) = µk×1 and cov(X1) = Σk×k. Let Xn = (X1+, X2+, ..., Xk+)′

denote the vector of sample means. Then
√
n(Xn − µ)

d−→ mvnk(0,Σ).

Multivariate Delta Method: Suppose Xn is a sequence of random vectors (of dimension
k) satisfying

(A1)
√
n(Xn − µ)

d−→ mvnk(0,Σ)

(A2) g : Rk → R is differentiable at µ (and is not zero).

Then
√
n[g(Xn)− g(µ)]

d−→ N
(

0,
∂g(µ)

∂x
Σ
∂g(µ)

∂x′

)
,

where
∂g(µ)

∂x
=

(
∂g(x)

∂x1

,
∂g(x)

∂x2

, ...,
∂g(x)

∂xk

)∣∣∣∣
x=µ

.

Remark: The limiting distribution stated in the multivariate delta method is a univariate
normal distribution. Note that g : Rk → R, so g(Xn) is a scalar random variable. The
quantity

∂g(µ)

∂x
Σ
∂g(µ)

∂x′
= a scalar.

Remark: The multivariate delta method can be generalized further to allow for functions
g : Rk → Rp, where p ≤ k; that is, g itself is vector valued. The only difference is that now

∂g(x)

∂x
=



∂g1(x)

∂x1

∂g1(x)

∂x2

· · · ∂g1(x)

∂xk
∂g2(x)

∂x1

∂g2(x)

∂x2

· · · ∂g2(x)

∂xk
...

...
. . .

...
∂gp(x)

∂x1

∂gp(x)

∂x2

· · · ∂gp(x)

∂xk


p×k

,
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in which case g(µ) is p× 1 and

∂g(µ)

∂x
Σ
∂g(µ)

∂x′
= p× p matrix.

Example 5.25. Suppose X = (X1, X2)′ is a continuous random vector with joint pdf

fX(x) = e−x2I(0 < x1 < x2 <∞).

In Example 4.7 (notes), we showed that

X1 ∼ exponential(1)

X2 ∼ gamma(2, 1).

We have E(X1) = 1, E(X2) = 2, var(X1) = 1, and var(X2) = 2. Also,

E(X1X2) =

∫ ∫
R2

x1x2fX1,X2(x1, x2)dx2dx1 = 3

so
cov(X1, X2) = E(X1X2)− E(X1)E(X2) = 3− 2 = 1.

Therefore, for the population described by fX(x), we have

µ =

(
1
2

)
2×1

and Σ =

(
1 1
1 2

)
2×2

.

Now suppose X1,X2, ...,Xn is an iid sample from fX(x); i.e., X1,X2, ...,Xn are mutually
independent and Xj = (X1j, X2j) ∼ fX(x), for j = 1, 2, ..., n. Define

X1+ =
1

n

n∑
j=1

X1j and X2+ =
1

n

n∑
j=1

X2j

and denote by

Xn =

(
X1+

X2+

)
,

the vector of sample means. The (multivariate) CLT says that

√
n(Xn − µ)

d−→ mvn2(0,Σ),

as n→∞, where µ and Σ are given above. In other words,

Xn ∼ AN 2

((
1
2

)
,

(
1/n 1/n
1/n 2/n

))
,

for large n.
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Q: Find the large sample distribution of

R = g(Xn) =
X1+

X2+

,

suitably centered and scaled.
Solution: With g(x1, x2) = x1/x2, we have

∂g(x1, x2)

∂x1

=
1

x2

and
∂g(x1, x2)

∂x2

= −x1

x2
2

so that
∂g(µ)

∂x
=

(
1

µ2

−µ1

µ2
2

)
=

(
1

2
−1

4

)
.

The multivariate delta method says that

√
n[g(Xn)− g(µ)] =

√
n

(
R− 1

2

)
d−→ N (0, σ2

R),

as n→∞, where

σ2
R =

∂g(µ)

∂x
Σ
∂g(µ)

∂x′
=

(
1

2
−1

4

)(
1 1
1 2

) 1

2

−1

4

 =
1

8
.

In other words,

R ∼ AN
(

1

2
,

1

8n

)
, for large n.

Example 5.26. In medical settings, it is common to observe data in the form of 2×2 tables
such as

Cured Not cured
Group 1 X11 X12

Group 2 X21 X22

Set X = (X11, X12, X21, X22) and assume X ∼ mult(n; p11, p12, p21, p22). Note that

X =
n∑
k=1

Yk,

where Yk = (Y11k, Y12k, Y21k, Y22k) and Yijk = I(kth individual is in cell ij), for i = 1, 2,
j = 1, 2, and k = 1, 2, ..., n. In other words, Y1,Y2, ...,Yn are iid mult(1; p11, p12, p21, p22)
with

µ = E(Y1) =


p11

p12

p21

p22

 = p
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and

Σ = cov(Y1) =


p11(1− p11) −p11p12 −p11p21 −p11p22

−p12p11 p12(1− p12) −p12p21 −p12p22

−p21p11 −p21p12 p21(1− p21) −p21p22

−p22p11 −p22p12 −p22p21 p22(1− p22)


= D(p)− pp′,

where D(p) = diag(p). Define the vector of sample proportions as

p̂ =
X

n
=

1

n

n∑
k=1

Yk.

The (multivariate) CLT says that
√
n(p̂−p)

d−→ mvn(0,Σ), as n→∞. This is a less-than-
full-rank normal distribution (STAT 714) because r(D(p)− pp′) = 3 < 4.

Q: Find the large sample distribution of the log-odds ratio

g(p̂) = ln

(
p̂11p̂22

p̂12p̂21

)
,

suitably centered and scaled.
Solution: With

g(p) = ln

(
p11p22

p12p21

)
,

we have

∂g(p)

∂p
=
(

1 −1 −1 1
)

p−1
11 0 0 0
0 p−1

12 0 0
0 0 p−1

21 0
0 0 0 p−1

22

 =
(

1 −1 −1 1
)
D−1(p).

By the multivariate delta method,

√
n[g(p̂)− g(p)]

d−→ N (0, σ2),

as n→∞, where

σ2 =
(

1 −1 −1 1
)
D−1(p)[D(p)− pp′]D−1(p)

(
1 −1 −1 1

)′
=

1

p11

+
1

p12

+
1

p21

+
1

p22

.

In other words,

ln

(
p̂11p̂22

p̂12p̂21

)
∼ AN

(
ln

(
p11p22

p12p21

)
,

1

n

2∑
i=1

2∑
j=1

1

pij

)
,

for large n.
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