1. For 0 , recall that the*p* $th quantile of a continuous random variable X, denoted by <math>\phi_p$, satisfies

$$F_X(\phi_p) = p,$$

where $F_X(\cdot)$ is the cumulative distribution function (cdf) of X. This definition assumes that the cdf is a strictly increasing function (i.e., there are no flat regions) over the support of X. In this problem, we will assume that $X_1, X_2, ..., X_n$ are iid exponential(β), where $\beta > 0$ is unknown. (a) Derive the population cdf of $X \sim \text{exponential}(\beta)$.

(b) On the basis of observing $X_1, X_2, ..., X_n$ (an iid exponential sample), find the maximum likelihood estimator of ϕ_p . Denote your estimator by $\hat{\phi}_p$. *Hint:* First show $\phi_p = -\beta \ln(1-p)$. (c) Under the exponential assumption, find the asymptotic distribution of $\hat{\phi}_p$, properly centered and scaled.

(d) Use your asymptotic distribution in part (c) to derive a large sample $1 - \alpha$ confidence set for ϕ_p .

2. Suppose $X_1, X_2, ..., X_n$ are iid from $f_X(x|\theta) = \theta x^{\theta-1} I(0 < x < 1)$, where $\theta > 0$ is unknown. Note that the population distribution here is $beta(\theta, 1)$.

(a) Derive the likelihood ratio test of

$$H_0: \theta = 1$$
versus
$$H_1: \theta \neq 1.$$

Express your decision rule in terms of a sufficient statistic and show how to obtain the critical value for the test.

(b) Invert the acceptance region of your test in part (a) and write a $1 - \alpha$ confidence set for θ . (c) Consider the same model setup as above, but now put the following prior distribution on θ :

$$\theta \sim \pi(\theta) = \frac{b^a}{\Gamma(a)} \theta^{a-1} e^{-b\theta} I(\theta > 0),$$

where a > 0 and b > 0 are known. Show how to find a $1 - \alpha$ credible set for θ .

3. Suppose that $X_1, X_2, ..., X_n$ is an iid sample from

$$f_X(x|\theta) = 2\theta x e^{-\theta x^2} I(x>0).$$

where $\theta > 0$ is unknown.

(a) Find the uniformly minimum variance unbiased estimator (UMVUE) of θ .

(b) Find the uniformly most powerful (UMP) test of

$$H_0: \theta \le \theta_0$$
versus
$$H_1: \theta > \theta_0,$$

where θ_0 is known.

(c) Derive an expression for the power function of the test in part (b).

4. Suppose $X_1, X_2, ..., X_n$ are iid $\mathcal{N}(\theta, a\theta^2)$, where a > 0 and $-\infty < \theta < \infty$. Both a and θ are unknown. Assume $\theta \neq 0$ for obvious reasons.

(a) Find method of moments estimators of θ and a.

(b) Show that $\hat{\theta} = \overline{X}$ and

$$\widehat{a} = \frac{S_b^2}{\overline{X}^2}$$

solve the score equations. Recall that S_b^2 is the sample variance with n in the denominator (not n-1).

(c) Argue that $\hat{a} \xrightarrow{p} a$, as $n \to \infty$. Then, use your intuition (and perhaps some mathematics) to formulate a sensible large sample test of

$$H_0: a = 1$$
versus
$$H_1: a \neq 1.$$

A good answer need not be overly mathematical.

5. In sampling land areas for counts of an animal species, we obtain an iid sample of counts $X_1, X_2, ..., X_n$, where each X_i has a Poisson distribution with mean $\lambda > 0$. (a) Show that maximum likelihood estimator (MLE) of λ , on the basis of observing $X_1, X_2, ..., X_n$, is

$$\widehat{\lambda} = \overline{X}.$$

(b) For simplicity in sampling, sometimes only the presence/absence of a species is recorded. That is, for each area, an investigator will record

$$Y_i = I(X_i \ge 1).$$

For example, if $X_1 = 1$, then $Y_1 = 1$. If $X_2 = 3$, then $Y_2 = 1$. If $X_3 = 0$, then $Y_3 = 0$. Let T denote the number of X_i 's (and hence Y_i 's) that are zero.

- Write down the binomial likelihood based only on observing T = t.
- Show that the MLE of λ based on observing T only is

$$\widetilde{\lambda} = -\ln\left(\frac{T}{n}\right).$$

(c) Recall that the asymptotic relative efficiency (ARE) of $\hat{\lambda}$ to $\hat{\lambda}$ is given by

$$\operatorname{ARE}(\widehat{\lambda} \text{ to } \widetilde{\lambda}) = \frac{\sigma_{\widehat{\lambda}}^2}{\sigma_{\widetilde{\lambda}}^2},$$

where $\sigma_{\widehat{\lambda}}^2$ and $\sigma_{\widetilde{\lambda}}^2$ are the variances of the (suitably centered and scaled) asymptotic distributions of $\widehat{\lambda}$ to $\widetilde{\lambda}$, respectively. Show that

$$\operatorname{ARE}(\widehat{\lambda} \text{ to } \widetilde{\lambda}) = \frac{\lambda}{e^{\lambda} - 1}.$$

(d) The overall goal is to estimate λ . Comment on the possible use of $\tilde{\lambda}$ instead of $\hat{\lambda}$. Would you ever advise an investigator to do this? If so, when?