1. Suppose $X_1, X_2, ..., X_n$ is an iid sample from $f_X(x|\theta)$, where $\theta \in \Theta \subseteq \mathbb{R}$. Recall the score function is given by

$$S(\theta|\mathbf{x}) = \frac{\partial}{\partial \theta} \ln f_{\mathbf{X}}(\mathbf{x}|\theta),$$

where $f_{\mathbf{X}}(\mathbf{x}|\theta)$ is the joint distribution of $\mathbf{X} = (X_1, X_2, ..., X_n)$.

(a) Show that $E_{\theta}[S(\theta|\mathbf{X})] = 0$.

(b) Calculate the score function when

$$f_X(x|\theta) = \begin{cases} \frac{1}{\pi} \frac{1}{1 + (x - \theta)^2}, & -\infty < x < \infty \\ 0, & \text{otherwise.} \end{cases}$$

(c) How would you find the maximum likelihood estimate of θ ?

2. You have observed one observation X from a distribution with probability density function $f_X(x)$ and support $\mathcal{X} = \{x : 0 < x < 1\}$.

(a) Derive the most powerful $\alpha = 0.05$ test for testing

$$H_0: f_X(x) = 2x \ I(0 < x < 1)$$

versus
 $H_1: f_X(x) = 5x^4 \ I(0 < x < 1).$

Be sure to give the rejection region explicitly. (b) Compute the power of the test.

3. Conditional on θ , the random variables $X_1, X_2, ..., X_n$ are iid from

$$f_X(x|\theta) = \theta^2 x e^{-\theta x} I(x > 0).$$

In turn, the parameter θ is best regarded as random with prior distribution

$$\tau(\theta) = ae^{-a\theta}I(\theta > 0),$$

where a > 0 is known.

(a) Find the posterior mean of θ .

(b) Discuss how you would formulate the Bayesian test of

$$H_0: \theta \le \theta_0$$
versus
$$H_1: \theta > \theta_0.$$

4. Suppose $X_1, X_2, ..., X_n$ are iid Bernoulli (θ) , where $0 < \theta < 1$.

(a) Find the Crámer-Rao Lower Bound (CRLB) on the variance of any unbiased estimator of $\operatorname{var}_{\theta}(X_1) = \theta(1-\theta)$.

(b) For $n \ge 3$, find the uniformly minimum variance unbiased estimator (UMVUE) of θ^3 .

5. Suppose $X_1, X_2, ..., X_n$ are iid Poisson random variables with mean $\theta > 0$. (a) Show that the likelihood ratio test (LRT) of

$$H_0: \theta \le \theta_0$$

versus
$$H_1: \theta > \theta_0$$

will reject H_0 if $\sum_{i=1}^n X_i > c'$. (b) Discuss how c' would be chosen in part (a) to ensure the test is level α . A brief discussion will suffice.

6. Suppose that $X_1, X_2, ..., X_n$ are iid $\mathcal{N}(0, \sigma^2)$, where $\sigma^2 > 0$ is unknown. (a) Derive the uniformly most powerful (UMP) level α test for testing

$$H_0: \sigma^2 \ge \sigma_0^2$$
versus
$$H_1: \sigma^2 < \sigma_0^2.$$

(b) Derive an expression for the power function $\beta(\sigma^2)$ of the UMP test.