GROUND RULES:

- This exam contains 5 questions. The questions are of equal weight.
- Print your name at the top of this page in the upper right hand corner.
- This exam is closed book and closed notes.
- Show all of your work and explain all of your reasoning! **Translation:** No work, no credit. Insufficient explanation, no credit. If you are unsure about whether or not you should explain a result or step in your derivation/proof, then this means you probably should explain it.
- Do not talk with anyone else about this exam. You must work by yourself. No communication of any type with others.

1. An ecologist observes data (x_i, Y_i) , i = 1, 2, ..., n, where $x_i > 0$ is the size of an area and Y_i is the number of moss plants in the area. Suppose the Y_i 's are mutually independent with $Y_i \sim \text{Poisson}(\beta x_i)$, where $\beta > 0$ is unknown. The x_i 's are regarded as known constants measured without error.

- (a) Derive the maximum likelihood estimator (MLE) of β . Derive its mean and variance.
- (b) The least squares estimator (LSE) is the value of β that minimizes

$$Q(\beta) = \sum_{i=1}^{n} (Y_i - \beta x_i)^2.$$

Find the LSE of β . Derive its mean and variance.

(c) Derive the Crámer-Rao Lower Bound on the variance of unbiased estimators of β . Does the MLE's variance or LSE's variance attain this lower bound? If not, find an estimator that does.

- 2. Suppose $X_1, X_2, ..., X_n$ are iid $\mathcal{N}(0, \sigma^2)$, where $\sigma^2 > 0$ is unknown.
- (a) Consider testing $H_0: \sigma^2 = \sigma_0^2$ versus $H_1: \sigma^2 \neq \sigma_0^2$. The test that rejects H_0 when

$$\sum_{i=1}^{n} X_i^2 \ge \sigma_0^2 \chi_{n,\alpha/2}^2 \quad \text{or} \quad \sum_{i=1}^{n} X_i^2 \le \sigma_0^2 \chi_{n,1-\alpha/2}^2$$

where $\chi^2_{n,\alpha/2}$ ($\chi^2_{n,1-\alpha/2}$) is the upper (lower) $\alpha/2$ quantile of the χ^2 distribution with *n* degrees of freedom, is a uniformly most powerful unbiased (UMPU) test. In a few sentences, explain what a UMPU test is and why it is a useful concept here.

(b) Invert the acceptance region of the UMPU test in part (a) to write a $1-\alpha$ confidence set for $\sigma^2.$

(c) Show that $\hat{\sigma}^2$, the maximum likelihood estimator (MLE) of σ^2 , satisfies

$$\sqrt{n}(\widehat{\sigma}^2 - \sigma^2) \xrightarrow{d} \mathcal{N}(0, 2\sigma^4),$$

as $n \to \infty$.

(d) Find a consistent estimator of the asymptotic variance in part (c).

Note: In parts (c) and (d), the regularity conditions needed for the MLE $\hat{\sigma}^2$ to be CAN hold.

3. Suppose $X_1, X_2, ..., X_n$ are iid from

$$f_X(x|\theta) = \begin{cases} \frac{x}{\theta} e^{-x^2/2\theta}, & x > 0\\ 0, & \text{otherwise}, \end{cases}$$

where $\theta > 0$.

(a) Show that $\{f_X(x|\theta): \theta > 0\}$ is a scale family. Identify the standard density $f_Z(z)$ and the scale parameter.

(b) Find a complete and sufficient statistic $T = T(\mathbf{X})$.

(c) Find the UMVUE of $E_{\theta}(X)$.

(d) Let $W = W(\mathbf{X}) = \sum_{i=1}^{k} X_i^2 / \sum_{i=1}^{n} X_i^2$, for k < n. Show the conditional distribution $f_{T|W}(t|w)$ does not depend on k.

4. Suppose $X_1, X_2, ..., X_n$ are iid from $f_X(x|p, \theta)$, where

$$f_X(x|p,\theta) = \begin{cases} \frac{p}{\theta}e^{-x/\theta}, & x > 0\\ \frac{1-p}{\theta}e^{x/\theta}, & x \le 0, \end{cases}$$

where $0 and <math>\theta > 0$. Both parameters are unknown.

(a) I have calculated $E(X) = (2p - 1)\theta$ and $E(X^2) = 2\theta^2$. Find the method of moments estimators of p and θ .

(b) Show that (D, K)' is a sufficient statistic, where

$$D = \sum_{i=1}^{n} I(X_i > 0)$$

$$K = \sum_{i=1}^{n} X_i I(X_i > 0) - \sum_{i=1}^{n} X_i I(X_i \le 0)$$

That is, D is the number of positive X_i 's, and K is the sum of the positive X_i 's minus the sum of the negative X_i 's. *Hint:* Show that $f_X(x|p,\theta)$ can be written as

$$f_X(x|p,\theta) = \left(\frac{p}{\theta}e^{-x/\theta}\right)^{I(x>0)} \left(\frac{1-p}{\theta}e^{x/\theta}\right)^{1-I(x>0)}$$

Now find $f_{\mathbf{X}}(\mathbf{x}|p,\theta)$ and use the Factorization Theorem.

(c) Show that (D/n, K/n)' maximizes the likelihood function of p and θ . Don't worry about verifying second order conditions.

(d) The information matrix $\mathbb{I}(p,\theta)$ based on 1 observation is

$$\mathbb{I}(p,\theta) = -E \left(\begin{array}{cc} \frac{\partial^2 \ln f_X(X|p,\theta)}{\partial p \partial p} & \frac{\partial^2 \ln f_X(X|p,\theta)}{\partial p \partial \theta} \\ \frac{\partial^2 \ln f_X(X|p,\theta)}{\partial \theta \partial p} & \frac{\partial^2 \ln f_X(X|p,\theta)}{\partial \theta \partial \theta} \end{array} \right),$$

where the expectation is taken elementwise (i.e., on each element of the 2×2 matrix). Calculate $\mathbb{I}^{-1}(p,\theta)$, the inverse of $\mathbb{I}(p,\theta)$. This matrix satisfies

$$\sqrt{n}\left[\left(\begin{array}{c}D/n\\K/n\end{array}\right)-\left(\begin{array}{c}p\\\theta\end{array}\right)\right]\stackrel{d}{\longrightarrow}\mathrm{mvn}_{2}(\mathbf{0},\mathbb{I}^{-1}(p,\theta)),$$

where 0 = (0, 0)'.

5. Suppose $X_1, X_2, ..., X_n$ is an iid sample from

$$f_X(x|\theta) = \begin{cases} \theta(1-x)^{\theta-1}, & 0 < x < 1\\ 0, & \text{otherwise,} \end{cases}$$

where $\theta > 0$.

- (a) Find a sufficient statistic $T = T(\mathbf{X})$ and show that it has monotone likelihood ratio.
- (b) Derive the uniformly most powerful (UMP) level α test for

$$H_0: \theta \ge \theta_0$$
versus
$$H_1: \theta < \theta_0.$$

You must give an explicit expression for the rejection region R for a test of size α . The rejection region must be simplified as much as possible, and all critical values must be precisely identified.

(c) Express the power function $\beta(\theta)$ in terms of the cumulative distribution function of a well known distribution.