
STAT 713 CHAPTER 10 HOMEWORK

From Casella and Berger, do the following problems from Chapter 10:

Homework 12: 9, 31, 36, 38, 40, and 47.

These are extra problems that I have given on past exams (in STAT 713 or in related courses).
You do not have to turn these in.

10.1. Suppose that X1, X2, ..., Xn is an iid sample from

fX(x|θ, ν) =
1

Γ(θ + 1)ν(θ+1)/2
xθe−x/

√
νI(x > 0),

where θ > −1 and ν > 0. Note that fX(x|θ, ν) is the pdf of X ∼ gamma(θ + 1,
√
ν).

(a) For this part only, suppose that both θ and ν are unknown. Find the method of moments
estimators of θ and ν.
(b) For this part, suppose that θ is known. Show that the maximum likelihood estimator (MLE)
of ν is

ν̂ =

(
X

θ + 1

)2

,

and derive the large-sample distribution of ν̂, properly centered and scaled. Hint: Recall
that, under regularity conditions (which hold here), a maximum likelihood estimator ν̂ satisfies
√
n(ν̂ − ν)

d−→ N (0, v(ν)), as n→∞, where v(ν) = 1/I1(ν) and

I1(ν) = Eν

{[
∂ log fX(X|ν)

∂ν

]2}
is the Fisher information based on a single observation.
(c) If θ is known, as in part (b), find the Wald test statistic and approximate level α rejection
region for testing H0 : ν = ν0 versus H1 : ν 6= ν0.

10.2. Consider the density function

fX(x|θ) =
1

2
(1 + θx)I(|x| < 1),

where |θ| < 1, which describes the decay distribution of electrons from muon decay when
X = cos(W ), and W is the angle measured in an experiment. The parameter θ, which is related
to polarization, is to be estimated using X1, X2, ..., Xn, an iid sample from this distribution.
(a) Find the method of moments (MOM) estimator θ̃, and also calculate Eθ(θ̃) and varθ(θ̃).
(b) Write out the likelihood function and also the score equation that would be solved to find
the maximum likelihood estimator (MLE).
(c) Recall that, under certain regularity conditions, maximum likelihood estimators θ̂ satisfy
√
n(θ̂ − θ) d−→ N (0, v(θ)), where v(θ) = 1/I1(θ) and

I1(θ) = Eθ

{[
∂ log fX(X|θ)

∂θ

]2}
is the Fisher information based on a single observation. Show that

σ2
θ̂

=
2θ3

log
(
1+θ
1−θ

)
− 2θ

.
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(d) For small θ and large n, compare σ2
θ̂

with n× varθ(θ̃) using the fact that for |θ| < 1,

log

(
1 + θ

1− θ

)
= 2

(
θ +

θ3

3
+
θ5

5
+ · · ·

)
.

10.3. Suppose that X1, X2, ..., Xn is an iid sample with density fX(x|θ), where θ is a scalar
parameter. Assume that all the regularity conditions hold for the MLE θ̂ to be asymptotically
normal with √

n(θ̂ − θ) d−→ N (0, I(θ)−1)

where I(θ) is the Fisher information based on one observation. Define τ = g(θ), where g is
a differentiable, monotone increasing function with inverse h. Show that you get the same
asymptotic distribution for g(θ̂) by using the Delta Method as you would by transforming the
problem to one with density fY (y|τ) and appealing to the asymptotic results for maximum
likelihood estimators. Recall that, by invariance, τ̂ = g(θ̂) is the MLE of τ .

10.4. Suppose that X1, X2, ..., Xn is an iid sample from the probability mass function (pmf)
given by

fX(x|θ) =

{
(1− θ)θx, x = 0, 1, 2, ...

0, otherwise,

where 0 < θ < 1. I have calculated Eθ(X) = θ/(1− θ) and varθ(X) = θ/(1− θ)2.
(a) Find the maximum likelihood estimator θ̂.
(b) Find the large-sample distribution of θ̂, properly centered and scaled. You may assume that
the “regularity conditions” hold for this distribution (because they do).
(c) Calculate the Wald statistic ZWn to test H0 : θ = θ0 versus H1 : θ 6= θ0.

10.5. Suppose that X1, X2, ..., Xn are iid exponential random variables with mean θ > 0. Derive
large-sample size α Wald, score, and likelihood ratio tests for H0 : θ = θ0 versus a two-sided
alternative. Do not derive a finite-sample test. Perform a simulation study to examine the size
properties of the three tests. How do they compare?

10.6. Suppose that X1, X2, ..., Xn is an iid sample from

fX(x|θ) =
2x

θ
e−x

2/θI(x > 0).

where θ > 0. Derive large-sample 1 − α Wald, score, and likelihood ratio confidence intervals.
Do not derive a finite-sample interval. Perform a simulation study to examine the coverage
properties of the three intervals. How do they compare?

10.7. For a random variable X with E(Xj) ≡ µ′j , the cumulant generating function of
X is κX(t) = lnmX(t), where mX(t) denotes the moment generating function of X. The jth
cumulant is defined by

κj =
∂j

∂tj
κX(t)

∣∣∣∣∣
t=0

.
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Suppose that X1, X2, ..., Xn is an iid sample, where the assumed model is N (µ, σ2µ2), and σ2

is known. Let µ̃ and µ̂ denote the MOM and MLE estimators of µ, respectively.
(a) Show that

µ̃ = X and µ̂ =

√
X

2
+ 4σ2m′2 −X

2σ2
,

where, recall, m′2 = n−1
∑n

i=1X
2
i is the second sample (uncentered) moment.

(b) Assuming that the N (µ, σ2µ2) model is correct, prove that both estimators µ̃ and µ̂ are
consistent for µ.

(c) Assuming that the N (µ, σ2µ2) model is correct, show that
√
n(µ̃ − µ)

d−→ N (0, σ2µ̃) and
√
n(µ̂− µ)

d−→ N (0, σ2µ̂). Find formulae for σ2µ̃ and σ2µ̂ and compute

ARE(µ̂ to µ̃) =
σ2µ̂
σ2µ̃
.

Which estimator is more efficient under the N (µ, σ2µ2) model assumption?
(d) Under the N (µ, σ2µ2) model, show that κ1 = µ, κ2 = σ2µ2, and that κ3 = κ4 = 0.
(e) Now, let’s suppose that we have our two estimators µ̃ and µ̂ (as stated above), but we allow
for departures from normality. That is, let’s assume that X1, X2, ..., Xn is an iid sample with
E(Xj

1) ≡ µ′j < ∞, for j = 1, 2, 3, 4. Results for the remaining parts will be stated in terms of
the first four cumulants κj , j = 1, 2, 3, 4; that is, we now examine the properties of µ̃ and
µ̂ when κ1 = µ, but when κ2, κ3, and κ4 are arbitrary; i.e., κ2 is no longer necessarily
equal to σ2µ2, and κ3 and κ4 are not necessarily zero. First, show that, in general,

κ1 = µ′1 (mean)

κ2 = µ′2 − κ21 (variance)

κ3 = µ′3 − 3κ1κ2 − κ31
κ4 = µ′4 − 4κ1κ3 − 3κ22 − 6κ21κ2 − κ41.

In part (e), note that κ1 is the mean and that κ2 is the variance (again, κ2 is not necessarily
equal to σ2µ2 henceforth). To reiterate, in the parts that follow, we are not assuming
normality. The value σ2 continues to be a known constant (it is present in the MLE estimator).

(f) Show that, under our new (relaxed) model assumptions,
√
n(µ̃− µ)

d−→ N (0, σ2µ̃), and give

a formula for σ2µ̃ in terms of the cumulants. Of course, this implies that the MOM estimator is
consistent for µ regardless of whether or not we assume normality and regardless of whether or
not we have correctly specified the correct variance function.
(g) Show that, under our new (relaxed) model assumptions,

µ̂
p−→
√
µ2 + 4σ2µ2 + 4σ2κ2 − µ

2σ2
= µ∗, say.

That is, under these relaxed model assumptions, the MLE isn’t even consistent.

(h) Show that
√
n(µ̂− µ∗) d−→ N (0, σ2µ̂), and give a formula for σ2µ̂ in terms of µ, σ2 (a known

constant), κ2, κ3, and κ4. This will be messy; you might use Maple to help with the algebra.
(i) Show that the MLE is consistent if we correctly specify that κ2 = σ2µ2, even in the absence
of normality; i.e., just substitute κ2 = σ2µ2 into the probability limit in part (g). This implies
that the MLE will be consistent if we specify the correct variance structure (consistency
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doesn’t have anything to do with whether or not we assume normality).
(j) Using your values of σ2µ̃ and σ2µ̂ in parts (f) and (h), respectively, show that when κ1 = µ and

κ2 = σ2µ2; that is, we have correctly specified the variance function, the asymptotic relative
efficiency

ARE(µ̂ to µ̃) =
σ2µ̂
σ2µ̃

=
1 + 2σ2 + 2σγ3 + σ2γ4

(1 + 2σ2)2
,

where γ3 = κ3/σ
3µ3 and γ4 = κ4/σ

4µ4.
(k) Summarize your findings; i.e., describe how the MLE and MOM can compare in the set-
tings we have examined. In particular, under what assumptions does the MLE outperform the
MOM? Under what assumptions can the MOM outperform the MLE?

10.8. Suppose that X1, X2, ..., Xn is an iid sample, each with probability p of being distributed
as uniform over (−1/2, 1/2) and with probability 1 − p of being distributed as uniform over
(0, 1).
(a) Find the maximum likelihood estimator (MLE) of p and determine its asymptotic distribu-
tion.
(b) Find another estimator of p using the method of moments (MOM). Determine its asymp-
totic distribution.
(c) Which of the two estimators (MLE or MOM) is more efficient? Prove your answer.
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