1. Consider the GM model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, where \mathbf{X} is $n \times p$ with rank $r \leq p$, $E(\boldsymbol{\epsilon}) = \mathbf{0}$ and $\operatorname{cov}(\boldsymbol{\epsilon}) = \sigma^2 \mathbf{I}$. Let $\hat{\boldsymbol{\beta}}$ denote a least squares estimator of $\boldsymbol{\beta}$ and suppose that $\boldsymbol{\lambda}'\boldsymbol{\beta}$ is estimable.

(a) Assume $\mathbf{a'Y}$ is an unbiased estimator of $\lambda'\beta$. What the Gauss-Markov Theorem say about $\operatorname{var}(\mathbf{a'Y})$ when compared to $\operatorname{var}(\lambda'\widehat{\beta})$?

(b) Let $\widehat{\mu} = \mathbf{X}\widehat{\beta}$ and $\widetilde{\mu} = \mathbf{A}'\mathbf{Y}$ for a nonrandom $n \times n$ matrix \mathbf{A} . Assume that $E(\mathbf{A}'\mathbf{Y}) = \mathbf{X}\beta$. Show that $\operatorname{cov}(\widetilde{\mu}) - \operatorname{cov}(\widehat{\mu})$ is nnd.

(c) Let $\widetilde{\mu} = \mathbf{A}' \mathbf{Y}$ and assume that $E(\mathbf{A}' \mathbf{Y}) = \mathbf{X} \boldsymbol{\beta}$. Show that

$$\sum_{i=1}^{n} \operatorname{var}(\widetilde{\mu}_i) \ge r\sigma^2,$$

where $\widetilde{\mu}_i$ is the *i*th component of $\widetilde{\mu}$.

- 2. Suppose that \mathbf{V} is pd. Prove that $(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{V}\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1} (\mathbf{X}'\mathbf{V}^{-1}\mathbf{X})^{-1}$ is nnd.
- 3. Consider the linear model defined by

$$Y_1 = 2\theta + \epsilon_1$$

$$Y_2 = \theta + \epsilon_2,$$

where $\epsilon_1 = 2Z_1 - Z_2$ and $\epsilon_2 = Z_1 + 2Z_2$, and Z_1 and Z_2 are independent random variables with zero mean and constant variance σ^2 .

(a) Write this model in $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ form. Find $E(\mathbf{Y})$ and $\operatorname{cov}(\mathbf{Y})$.

- (b) Compute the ordinary least squares (OLS) estimator of θ .
- (c) Compute the generalized least squares (GLS) estimator of θ .
- (d) Show that the OLS and GLS estimators are both unbiased.
- (e) Compute the variance of both estimators and compare.

4. Suppose that $Y_1, Y_2, ..., Y_n$ is an iid $\mathcal{U}(0, 2\theta)$ sample, where $\theta > 0$. Define $\epsilon_i = Y_i - \theta$, for i = 1, 2, ..., n.

(a) Find the mean and covariance matrix of $\boldsymbol{\epsilon} = (\epsilon_1, \epsilon_2, ..., \epsilon_n)'$.

(b) Show that $\mathbf{Y} = (Y_1, Y_2, ..., Y_n)'$ follows a Gauss-Markov model.

(c) Find the BLUE of θ , say $\hat{\theta}_{OLS}$. Give both a matrix expression and an expression in terms of simple summary statistics.

(d) Find c so that $\hat{\theta} = cY_{(n)}$, where $Y_{(n)} = \max\{Y_1, Y_2, ..., Y_n\}$, is unbiased for θ and compute the variance of $\hat{\theta}$.

(e) Compare the variances of $\hat{\theta}_{OLS}$ and $\hat{\theta}$. Are you surprised? Explain your findings in light of the Gauss-Markov Theorem.

5. Suppose that $Y_1 \sim \text{beta}(\alpha, \beta)$, where $\alpha = \beta = 2$. Let $Y_2 = 1 - Y_1$, $Y_3 = Y_1Y_2$, and $\mathbf{Y} = (Y_1, Y_2, Y_3)'$. Compute $E(\mathbf{Y}'\mathbf{A}\mathbf{Y})$, where \mathbf{A} is the matrix in HW 2, Problem 10.

6. Consider the linear regression model

$$egin{array}{rcl} \mathbf{Y} &=& \mathbf{X}m{eta}+m{\epsilon} \ &=& \mathbf{1}eta_0+\mathbf{X}_1m{eta}_1+m{\epsilon}, \end{array}$$

where **Y** is $n \times 1$, **1** is an $n \times 1$ vector of ones, **X**₁ is an $n \times p$ matrix of (full) rank p, **X** = (**1 X**₁) is an $n \times (p+1)$ matrix with $\mathbf{1'X}_1 = \mathbf{0}$, β_0 is a fixed (scalar) parameter, β_1 is a $(p \times 1)$ vector of fixed parameters, and $\boldsymbol{\beta} = (\beta_0, \boldsymbol{\beta}'_1)'$. Suppose that $\boldsymbol{\epsilon}$ has zero mean and covariance matrix

$$\mathbf{V} = \sigma^2 \{ (1 - \rho) \mathbf{I} + \rho \mathbf{J} \},\$$

where $\mathbf{J} = \mathbf{11}'$, \mathbf{I} is an $n \times n$ identity matrix, $-1 < \rho < 1$, and $\sigma^2 > 0$. (a) Show that

$$\mathbf{V}^{-1} = \{\sigma^2 (1-\rho)\}^{-1} (\mathbf{I} + b\mathbf{J}),\$$

where $b = -\rho/(1 - \rho + n\rho)$.

(b) Suppose that ρ is known. Show that the ordinary least squares (OLS) and the generalized least squares (GLS) estimators for $\boldsymbol{\beta} = (\beta_0, \beta'_1)'$ are identical.

(c) Find the covariance matrix of the OLS estimator of β_1 .

(d) Let $\hat{\mathbf{Y}}$ denote the vector of predicted values obtained by fitting the model by OLS, and let $\hat{\mathbf{e}} = \mathbf{Y} - \hat{\mathbf{Y}}$. Show that the residual mean square

$$MSE = \frac{\widehat{\mathbf{e}}'\widehat{\mathbf{e}}}{n-p-1}$$

is an unbiased estimator for $\sigma^2(1-\rho)$.

7. Suppose that **X** is $n \times p$ with rank r.

(a) For $\mathbf{a}_{n\times 1}$, show that $\mathbf{P}_{\mathbf{X}}\mathbf{a} = \mathbf{0}$ if and only if $\mathbf{X}'\mathbf{a} = \mathbf{0}$, where $\mathbf{P}_{\mathbf{X}}$ is the perpendicular projection matrix onto $\mathcal{C}(\mathbf{X})$.

(b) Assume the GM model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ holds; i.e., $E(\boldsymbol{\epsilon}) = \mathbf{0}$ and $\operatorname{cov}(\boldsymbol{\epsilon}) = \sigma^2 \mathbf{I}$. Suppose that $\boldsymbol{\lambda}'\boldsymbol{\beta}$ is estimable. Prove: If $\hat{\boldsymbol{\beta}}$ solves the normal equations, then $0 < \operatorname{var}(\boldsymbol{\lambda}'\hat{\boldsymbol{\beta}}) < \infty$.

8. Let $Y_1, Y_2, ..., Y_n$ be uncorrelated observations with $E(Y_i) = \mu$ and $\operatorname{var}(Y_i) = \sigma^2/w_i$, i = 1, 2, ..., n, where $w_1, w_2, ..., w_n$ are fixed constants.

(a) Find the BLUE of μ and find the variance of this estimator.

(b) Find the OLS estimator of μ and its variance.

9. Consider the Aitken model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, where \mathbf{X} is $n \times p$ with rank $r \leq p$, $E(\boldsymbol{\epsilon}) = \mathbf{0}$ and $\operatorname{cov}(\boldsymbol{\epsilon}) = \sigma^2 \mathbf{V}$, \mathbf{V} known.

(a) Derive the mean and covariance matrix of the ordinary least squares (OLS) estimator.

(b) Derive the mean and covariance matrix of the generalized least squares (GLS) estimator.

(c) If r = p, show that $\operatorname{cov}(\widehat{\boldsymbol{\beta}}_{\text{OLS}} - \widehat{\boldsymbol{\beta}}_{\text{GLS}}) = \operatorname{cov}(\widehat{\boldsymbol{\beta}}_{\text{OLS}}) - \operatorname{cov}(\widehat{\boldsymbol{\beta}}_{\text{GLS}}).$

10. Consider the linear regression model $Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, where $\epsilon_1, \epsilon_2, ..., \epsilon_n$ are uncorrelated zero mean random variables with common variance σ^2 .

(a) Show that the least squares estimator of β_1 under the model when $\beta_0 = 0$ is given by

$$\widehat{\beta}_1^* = \frac{\sum_{i=1}^n x_i Y_i}{\sum_{i=1}^n x_i^2}.$$

(b) Find the bias of $\widehat{\beta}_1^*$ when, in fact, $\beta_0 \neq 0$.

(c) Derive the variance of $\hat{\beta}_1^*$ and the variance of the least squares estimator $\hat{\beta}_1$ when β_0 is not known. Comment on which estimator has the smallest variance and whether or not this contradicts the Gauss-Markov Theorem.

11. Consider the Aitken model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, where $E(\boldsymbol{\epsilon}) = \mathbf{0}$ and $\operatorname{cov}(\boldsymbol{\epsilon}) = \sigma^2 \mathbf{V}$, \mathbf{V} known and pd. Recall that the GLS estimator $\hat{\boldsymbol{\beta}}_{\text{GLS}}$ minimizes

$$Q^*(\boldsymbol{\beta}) = (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})'\mathbf{V}^{-1}(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}).$$

(a) Show that $Q^*(\widehat{\boldsymbol{\beta}}) = \mathbf{Y}'(\mathbf{I} - \mathbf{A})'\mathbf{V}^{-1}(\mathbf{I} - \mathbf{A})\mathbf{Y}$, where $\mathbf{A} = \mathbf{X}(\mathbf{X}'\mathbf{V}^{-1}\mathbf{X})^{-}\mathbf{X}'\mathbf{V}^{-1}$. Note that $Q^*(\widehat{\boldsymbol{\beta}})$ is the residual sum of squares in the Aitken model fit.

(b) Suppose that $r(\mathbf{X}) = r$. Under the Aitken model, show that $Q^*(\widehat{\boldsymbol{\beta}})/(n-r)$ is an unbiased estimator of σ^2 .

12. Suppose that $\mathbf{Y} = (Y_1, Y_2, Y_3)'$ has a trivariate normal distribution; specifically,

$$\mathbf{Y} \sim \mathcal{N}_3 \left\{ \left(\begin{array}{c} 1\\ -1\\ 1 \end{array} \right), \left(\begin{array}{ccc} 1 & 2 & 0\\ 2 & 2 & -1\\ 0 & -1 & 4 \end{array} \right) \right\}.$$

(a) Define

$$\mathbf{A} = \left(\begin{array}{rrr} 1 & 2 & 2 \\ 2 & 0 & 3 \\ 2 & 3 & 1 \end{array} \right).$$

Compute $E(\mathbf{Y}'\mathbf{A}\mathbf{Y})$.

(b) The variance of a quadratic form $\mathbf{Y}'\mathbf{A}\mathbf{Y}$, \mathbf{A} symmetric, when \mathbf{Y} is multivariate normal with mean $\boldsymbol{\mu}$ and covariance matrix \mathbf{V} , (which it is here), is

$$V(\mathbf{Y}'\mathbf{A}\mathbf{Y}) = 2[\operatorname{tr}(\mathbf{A}\mathbf{V})]^2 + 4\boldsymbol{\mu}'\mathbf{A}\mathbf{V}\mathbf{A}\boldsymbol{\mu}.$$

Find $V(\mathbf{Y}'\mathbf{A}\mathbf{Y})$. Note that this formula is not correct when **Y** is not multivariate normal.