STAT 509 Homework 1 Solution

Chong Ma

February 7, 2017

Problem 1

Consider the event $\mathrm{A}=\{$ tomorrow rains $\}$, then $P(A)=0.3$. Different sample space including the event A are possible as follows.
(i) Sample space $\mathrm{S}=\{24$ hours tomorrow $\}$
(ii) Sampel space $S=$ \{all region covered by the local television station $\}$
(iii) Sample space $\mathrm{S}=$ \{all local meteorologists $\}$
(iv) Sample space $\mathrm{S}=$ \{all inhabitants of the region covered by the local televesion stations $\}$
(v) Sample space $\mathrm{S}=$ \{all days forecasted by this local television weatherman\}

Problem 2

Be familiar with set algebra, especially learing the DeMorgan's Laws. Note that $P(A)=0.6, P(B)=$ $0.5, P(A \cap B)=0.2$. Hence,
(a) $P(\bar{A})=1-P(A)=1-0.6=0.4$
(b) $P(A \cup B)=P(A)+P(B)-P(A \cap B)=0.5+0.6-0.2=0.9$
(c) $P(\bar{A} \cap B)=P(B)-P(A \cap B)=0.5-0.2=0.3$
(d) $P(\bar{A} \cup \bar{B})=P(\overline{A \cap B})=1-P(A \cap B)=1-0.2=0.8$
(e) $P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{0.2}{0.6}=\frac{1}{3}$
(f) Not independent, since $P(B) \neq P(B \mid A)$.

Problem 3

Note that $\mathrm{A}=\{$ a soil sample has higher copper content $\}, \mathrm{B}=\{$ the mint is present $\}$ and $P(A)=0.3, P(B)=$ $0.23, P(B \mid A)=0.7$.
(a) $P(\bar{B})=1-P(B)=1-0.23=0.77$
(b) $P(A \cap B)=P(B \mid A) P(A)=(0.7)(0.3)=0.21$
(c) $P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{0.21}{0.23}=0.913$
(d) No, since $P(B \mid A) \neq P(B)$.

Problem 4

Denote $\mathrm{A}=\left\{\right.$ successfully finding the crashed plane\}. Since $P\left(R_{1}\right)=0.3, P\left(R_{2}\right)=0.7$ and $P\left(A \mid R_{1}\right)=0.8$, $P\left(A \mid R_{2}\right)=0.4$, then
(a) $P\left(A \cap R_{2}\right)=P\left(A \mid R_{2}\right) P\left(R_{2}\right)=(0.4)(0.7)=0.28$
(b)

$$
\begin{aligned}
P(\bar{A}) & =1-P(A)=1-\left\{P\left(A \mid R_{1}\right) P\left(R_{1}\right)+P\left(A \mid R_{2}\right) P\left(R_{2}\right)\right\} \\
& =1-\{0.8(0.3)+0.4(0.7)\}=0.48
\end{aligned}
$$

(c) $P\left(R_{1} \mid A\right)=\frac{P\left(A \cap R_{1}\right)}{P(A)}=\frac{P\left(A \mid R_{1}\right) P\left(R_{1}\right)}{1-P(\bar{A})}=0.4615$

Problem 5

(a) Denote $A_{1}=$ \{component 1 is functioning $\}, A_{2}=\{$ component 2 is functioning $\}$ and $A=$ \{the system involving two components is functioning\}. Note that $P\left(A_{1}\right)=P\left(A_{2}\right)=p$. Thus,

$$
\begin{aligned}
P(A) & =P\left(A_{1} \cup A_{2}\right)=1-P\left(\overline{A_{1} \cup A_{2}}\right) \\
& =1-P\left(\overline{A_{1}} \cap \overline{A_{2}}\right)=1-P\left(\overline{A_{1}}\right) P\left(\bar{A}_{2}\right) \\
& =1-(1-p)^{2}
\end{aligned}
$$

(b) Similarly, denote $A_{i}=\{$ component is functioning $\}, i=1,2, \ldots, n$ and $A=\{$ the system involving n components is funct Note that $P\left(A_{i}\right)=p, i=1,2, \ldots, n$. Thus,

$$
\begin{aligned}
P(A) & =P\left(\cup_{i=1}^{n} A_{i}\right)=1-P\left(\overline{\cup_{i=1}^{n} A_{i}}\right) \\
& =1-P\left(\cap_{i=1}^{n} \bar{A}_{i}\right)=1-\prod_{i=1}^{n} P\left(\bar{A}_{i}\right) \\
& =1-(1-p)^{n}
\end{aligned}
$$

(c) Solve $r_{4}=1-(1-p)^{4}=0.999$, and we have

$$
p=1-(1-0.999)^{1 / 4}=0.8222
$$

Problem 6

Note that sensitivity is $P(\operatorname{Pos} \mid$ Present $)=0.95$ and specificity $=P(\mathrm{Neg} \mid \mathrm{Absent})=0.97$, hence $P($ Neg \mid Present $)=1-0.95=0.05$ and $P(\operatorname{Pos} \mid$ Absent $)=1-0.97=0.03$. Denote $p=$ the probability that an individual is strep Where

$$
\begin{aligned}
\operatorname{Pos} & =\text { test result is positive } \\
\mathrm{Neg} & =\text { test result is negtive } \\
\text { Present } & =\text { the streptococcus is actually present } \\
\text { Absent } & =\text { test strptococcus is actually not present }
\end{aligned}
$$

(a)

$$
\begin{aligned}
P P V(p) & =P(\text { Present } \mid \text { Pos })=\frac{P(\text { Pos } \mid \text { Present }) P(\text { Present })}{P(\text { Pos })} \\
& =\frac{P(\text { Pos } \mid \text { Present }) P(\text { Present })}{P(\text { Pos } \mid \text { Present }) P(\text { Present })+P(\text { Pos } \mid \text { Absent }) P(\text { Absent })} \\
& =\frac{0.95 p}{0.95 p+0.03(1-p)}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
N P V(p) & =P(\mathrm{Absent} \mid \mathrm{Neg})=\frac{P(\mathrm{Neg} \mid \mathrm{Absent}) P(\mathrm{Absent})}{P(\mathrm{Neg})} \\
& =\frac{P(\mathrm{Neg} \mid \mathrm{Absent}) P(\mathrm{Absent})}{P(\mathrm{Neg} \mid \mathrm{Absent}) P(\mathrm{Absent})+P(\text { Neg } \mid \text { Present }) P(\text { Present })} \\
& =\frac{0.97(1-p)}{0.97(1-p)+0.05 p}
\end{aligned}
$$

(b) Graph PPV and NPV as functions of p .

```
ppv<-function(p) 0.95*p/(0.95*p+0.03*(1-p))
npv<-function(p) 0.97*(1-p)/(0.97*(1-p)+0.05*p)
curve(ppv,0,1,col=1,xlab="p",ylab="")
curve(npv, 0,1,col=2,add=TRUE)
legend("bottomright",c("PPV","NPV"),col=1:2,1ty=rep(1,2),
    seg.len = 1,bty = "n")
```


(c) When $p=0.10$, thus

$$
\begin{aligned}
& P P V(p)=\frac{0.95 p}{0.95 p+0.03(1-p)}=0.7786885 \\
& N P V(p)=\frac{0.97(1-p)}{0.97(1-p)+0.05 p}=0.9943052
\end{aligned}
$$

If a person has a positive test, the predictive probability that the person is actually strep-positive is 0.78. If a person has a negative test, the predictive probability that the person is actually strep-negative is 0.99 .
(d) Given the rapid test is positive, then the updated probability of being strep-positive is

$$
P P V(0.1)=0.78
$$

Note the sensitivity and specificity for a throat-culture test are both 0.999 , therefore the PPV for a throat-culture test is

$$
P P V(p)=\frac{0.999 p}{0.999 p+0.001(1-p)}
$$

Given the throat-culture test is positive, using the updated $p=0.78$, the new PPV is

$$
P P V(0.78)=\frac{0.999(0.78)}{0.999(0.78)+0.001(1-0.78)}=0.9997
$$

(e) Given the rapid test is negtive, then the updated probability of being strep-negtive is

$$
N P V(0.1)=0.994
$$

Note the sensitivity and specificity for a throat-culture test are both 0.999 , therefore the NPV for a throat-culture test is

$$
N P V(p)=\frac{0.999(1-p)}{0.999(1-p)+0.001 p}
$$

Given the throat-culture test is negtive, using the updated $p=1-0.994=0.006$, the new NPV is

$$
N P V(0.006)=\frac{0.999(0.994)}{0.999(0.994)+0.001(1-0.994)}=0.999994
$$

