STAT 509 Homework 2 Solution

Chong Ma
February 2, 2017

Problem 1

It tests how you understand the generic discrete distribution.
(a).

```
y=c(0,1,2,3,4); prob=c(0.41,0.37,0.16,0.05,0.01)
cdf = c(0,cumsum(prob)); cdf.plot = stepfun(y,cdf,f=0)
par(mfrow=c (1,2))
# Plot PMF
plot(y,prob,type="h",xlab="y",ylab="PMF",ylim=c(0,0.275))
abline(h=0)
# Plot CDF
plot.stepfun(cdf.plot,xlab="y",ylab="CDF",verticals=FALSE,do.points=TRUE,main="",pch=16)
```


(b). The probability that there are at least $\mathbf{2}$ imperfections is

$$
\begin{aligned}
P(Y \geq 2) & =P(Y=2)+P(Y=3)+P(Y=4) \\
& =0.16+0.05+0.01 \\
& =0.22
\end{aligned}
$$

(c). The probability that there are at most 2 imperfections is

$$
\begin{aligned}
P(Y \leq 2) & =P(Y=0)+P(Y=1)+P(Y=2) \\
& =0.41+0.37+0.16 \\
& =0.94
\end{aligned}
$$

(d). The mean of Y is given by

$$
\begin{aligned}
E(Y) & =\sum_{y} y P(Y=y) \\
& =(0) P(Y=0)+(1) P(Y=1)+(2) P(Y=2)+(3) P(Y=3)+(4) P(Y=4) \\
& =(0) 0.41+(1) 0.37+(2) 0.16+(3) 0.05+(4)(0.01) \\
& =0.88
\end{aligned}
$$

Note that $\operatorname{var}(Y)=E\left(Y^{2}\right)-[E(Y)]^{2}$, and

$$
\begin{aligned}
E\left(Y^{2}\right) & =\sum_{y} y^{2} P(Y=y) \\
& =\left(0^{2}\right) P(Y=0)+\left(1^{2}\right) P(Y=1)+\left(2^{2}\right) P(Y=2)+\left(3^{2}\right) P(Y=3)+\left(4^{2}\right) P(Y=4) \\
& =(0) 0.41+(1) 0.37+(4) 0.16+(9) 0.05+(16)(0.01) \\
& =1.62
\end{aligned}
$$

Therefore, the variance of Y is obtained by

$$
\operatorname{var}(Y)=E\left(Y^{2}\right)-[E(Y)]^{2}=1.62-(0.88)^{2}=0.8456
$$

(e). Given model of Y, we can calculate the probability of observing such 10 observations by

$$
\begin{aligned}
P\left(Y_{1}=y_{1}, Y_{2}=y_{2}, \ldots, Y_{10}=y_{10}\right) & =P\left(Y_{1}=y_{1}\right) \times P\left(Y_{2}=y_{2}\right) \times \cdots \times P\left(Y_{10}=y_{10}\right) \\
\left(\operatorname{since} Y_{1}, Y_{2}, \ldots, Y_{10} \stackrel{i . i . d}{\sim} Y\right) & =P(Y=0)^{5} P(Y=1)^{3} P(Y=2)^{2} P(Y=4) \\
& =(0.41)^{5}(0.37)^{3}(0.16)^{2}(0.01) \\
& =1.5 \times 10^{-7} \approx 0
\end{aligned}
$$

Because the probability of observing such 10 consecutive obervations approximates 0 , thus those observations are not consistent with the model. Another set of 10 observations that are grossly inconsistent with the model is $\{4,4,4,4,4,4,4,4,4,4\}$, since the probability of observing 104 's in a row is 10^{-20}.

Problem 2

This problem is an exercise for binomial distribution. (a). $Y \sim \operatorname{Binomial}(20,0.02)$ since

- drawer = "trial"
- drawer get stuck $=$ "success"
- $p=P($ "success" $)=0.02$
(b). The probability that the lot will be shipped is $\left.P(Y=0)=\binom{20}{0} 0.02^{0}(1-0.02)^{(} 20-0\right) \approx 0.668$

```
## R code for P(Y=0)
dbinom(0,20,0.02)
```

\#\# [1] 0.667608
(c). The probability that at least two drawers will get stuck is

$$
\begin{aligned}
P(Y \geq 2) & =1-P(Y<2) \\
& =P(Y=0)+P(Y=1) \\
& \left.\left.=\binom{20}{0} 0.02^{0}(1-0.02)^{(} 20-0\right)+\binom{20}{1} 0.02^{1}(1-0.02)^{(} 20-1\right) \\
& =0.668+0.272 \approx 0.94
\end{aligned}
$$

(d). Graph the pmf of Y and the cdf of Y.

```
y = 0:20; prob = dbinom(y,20,0.02)
cdf = c(0,cumsum(prob)); cdf.plot = stepfun(y,cdf,f=0)
op<-par(mfrow=c(1,2))
# Plot PMF
plot(y,prob,type="h",xlab="y",ylab="PMF",ylim=c(0,0.7))
abline(h=0)
# Plot CDF
plot.stepfun(cdf.plot,xlab="y",ylab="CDF",verticals=FALSE,do.points=TRUE,main="",pch=16)
```


(e).

- The mean of $Y: E(Y)=n p=20(0.02)=0.4$
- The variance of $Y: \operatorname{var}(Y)=n p(1-p)=20(0.02)(0.98)=0.392$
- The standard deviation of $Y ; s d(Y)=\sqrt{\operatorname{var}(Y)}=0.626$

Problem 3

This problem is an exercise of combinations of geometric distribution, binomial distribution and hypergeometric distribution. (a). $Y \sim \operatorname{geom}(p=0.05)$

$$
\begin{aligned}
P(Y>3) & =1-P(Y \leq 3) \\
& =1-(P(Y=1)+P(Y=2)+P(Y=3)) \\
& =1-\left(0.05+(0.95)(0.05)+(0.95)^{2}(0.05)\right) \\
& =0.8574
\end{aligned}
$$

1-pgeom (2, 0.05)
\#\# [1] 0.857375
(b). $P(Y>5 \mid Y>2)=P(Y>3)$, since

$$
\begin{aligned}
P(Y>5 \mid Y>2) & =\frac{P(Y>5, Y>2)}{P(Y>2)}=\frac{P(Y>5)}{P(Y>2)} \\
& =\frac{(1-p)^{5} p+(1-p)^{6} p+(1-p)^{7} p+\ldots}{(1-p)^{2} p+(1-p)^{3} p+(1-p)^{7} p+\ldots} \\
& =\frac{(1-p)^{5}\left(p+(1-p) p+(1-p)^{2} p+\ldots\right)}{(1-p)^{2}\left(p+(1-p) p+(1-p)^{2} p+\ldots\right)} \\
& =(1-p)^{3}
\end{aligned}
$$

and

$$
P(Y>3)=(1-p)^{3} p+(1-p)^{4} p+(1-p)^{5} p+\ldots=(1-p)^{3}\left(p+(1-p) p+(1-p)^{2} p+\ldots\right)=(1-p)^{3}
$$

(c). Fix 30 donations, Y turns out the number of donations that are infected. Thus, $Y \sim \operatorname{Binomial}(30,0.05)$.

$$
\begin{aligned}
P(Y \leq 2) & =P(Y=0)+P(Y=1)+P(Y=2) \\
& =\binom{30}{0}(0.05)^{0}(0.95)^{30}+\binom{30}{1}(0.05)^{1}(0.95)^{29}+\binom{30}{2}(0.05)^{2}(0.95)^{28} \\
& =0.8122
\end{aligned}
$$

(d). $Y \sim \operatorname{hyper}(N=30, n=3, r=10)$. The probability that exactly one is from an AA donor is

$$
P(Y=1)=\frac{\binom{10}{1}\binom{20}{2}}{\binom{30}{3}}=0.468
$$

Problem 4

This problem is an exercise of negative binomial distribution.
(a).

- drilling wells = "trials"
- oil well strick $=$ "success"
- $p=P($ "success" $)=0.20$
(b). Note that $Y \sim \operatorname{geom}(p=0.2)$, the probability tht the 1st successful well is found on the 4th well drilled is

$$
P(Y=4)=(1-p)^{3} p=(0.8)^{3}(0.2)=0.1024
$$

(c). Note that $Y \sim \operatorname{nib}(r=2, p=0.2)$, the probability that taking more than 4 wells to find the 2 nd successful well is

$$
\begin{aligned}
P(Y>4) & =1-P(Y \leq 4) \\
& =1-(P(Y=2)+P(Y=3)+P(Y=4)) \\
& =1-\left((0.2)^{2}+\binom{2}{1}(0.2)^{2}(0.8)+\binom{3}{1}(0.2)^{2}(0.8)^{2}\right) \\
& =0.8192
\end{aligned}
$$

Problem 5

(a). Graph the pmf and pdf of Y

```
y = 0:25; prob = dpois(y,6.5)
cdf = c(0,cumsum(prob)); cdf.plot = stepfun(y,cdf,f=0)
op<-par(mfrow=c(1,2))
# Plot PMF
plot(y,prob,type="h",xlab="y",ylab="PMF",ylim=c(0,0.2))
abline(h=0)
# Plot CDF
plot.stepfun(cdf.plot,xlab="y",ylab="CDF",verticals=FALSE,do.points=TRUE,main="",pch=16)
```


(b).

- The probability that on a given day there are exactly 5 calls is

$$
P(Y=5)=\frac{6.5^{5}}{5!} e^{-6.5}=0.1453689
$$

- The probability that on a given day there are at least 5 calls is

$$
\begin{aligned}
P(Y \geq 5) & =1-P(Y<5)=1-P(Y=0)+P(Y=1)+\cdots+P(Y=4) \\
& =1-\sum_{y=0}^{4} \frac{y^{\lambda}}{y!} e^{-\lambda}=1-0.2236718=0.7763282
\end{aligned}
$$

- The probability that on a given day there are at most 5 calls is

$$
\begin{aligned}
P(Y \leq 5) & =P(Y=0)+P(Y=1)+\cdots+P(Y=5) \\
& =\sum_{y=0}^{5} \frac{y^{\lambda}}{y!} e^{-\lambda}=0.3690407
\end{aligned}
$$

(c). From the pmf plot of Y, we can esaily tell the mode of Y is 6 .
(d). Note that $E(Y)=\operatorname{Var}(Y)=\lambda$, and $\operatorname{Var}(Y)=E\left(Y^{2}\right)-[E(Y)]^{2}$, therefore $E\left(Y^{2}\right)=\operatorname{Var}(Y)+[E(Y)]^{2}=$ $\lambda+\lambda^{2}$. Hence,

$$
\begin{aligned}
E(g(Y)) & =150+100 E(Y)+5 E\left(Y^{2}\right) \\
& =150+100(6.5)+5\left(6.5+6.5^{2}\right) \\
& =1043.75
\end{aligned}
$$

(e). In this context, of total $N=30$ calls, they are split into two classes, class $1=\{$ calles involving illegal consumption of alcohol $\}$ and class $2=\{$ calls not involving illegal consumption of alcohol\}. Randomly pick 5 cases(calls), define

$$
Y=\# \text { of cases involving illegal consumption of alcohol }
$$

Hence, $Y \sim \operatorname{hyper}(N=30, r=12, N-r=18, n=5)$. The probability that at least 4 of these cases will involve illegal consumption of alcohol is

$$
\begin{aligned}
P(Y \geq 4) & =P(Y=4)+P(Y=5) \\
& =\frac{\binom{12}{4}\binom{18}{1}}{\binom{30}{5}}+\frac{\binom{12}{5}\binom{18}{0}}{\binom{30}{5}} \\
& =0.0680813
\end{aligned}
$$

Problem 6

(a).

- chemical compound $=$ "trials"
- compound is active = "success"
- $p=P$ ("compound is active")
(b). The probability that a single pool of k compounds will test positive

$$
\begin{aligned}
P(\text { a single pool of } \mathrm{k} \text { compounds test positive }) & =P(\text { at least one compound tests positive }) \\
& =1-P(\text { None of } \mathrm{k} \text { compounds tests positive }) \\
& =1-(1-p)^{k}
\end{aligned}
$$

(c). Consider m pools as a series of Bernoulli trials, each pool has either "active" or "inactive" two statuses, and P (a single pool tests active $)=1-(1-p)^{k}$ (denoted as $\left.p_{l}\right)$ is the same as all pools. Note

$$
Y=\# \text { of tests needed to screen the entire library under (ii) }
$$

Interval	preferred
$0<p<0.001$	$m=2000, k=50$
$0.001<p<0.006$	$m=5000, k=20$
$0.006<p<0.024$	$m=10000, k=10$
$0.024<p<0.2$	$m=20000, k=5$

and further Y can be written as

$$
Y=Y_{1}+Y_{2}+\cdots+Y_{m}
$$

Where $Y_{j}=\#$ of tests needed to screen the jth pool, $j=1,2, \ldots, m$ and

$$
Y_{j}= \begin{cases}1, & \text { with probability } 1-p_{l} \\ k+1, & \text { with probability } p_{l}\end{cases}
$$

Note that $E\left(Y_{j}\right)=(1)\left(1-p_{l}\right)+(k+1)\left(p_{l}\right)=1+k p_{l}$, therefore

$$
\begin{aligned}
E(Y) & =E\left(Y_{1}+Y_{2}+\cdots+Y_{m}\right)=m E\left(Y_{1}\right) \\
& =m\left(1+k p_{l}\right)=m k\left(1-(1-p)^{k}\right)+m\left(=N\left(1-(1-p)^{k}\right)+m\right)
\end{aligned}
$$

(d).

- plan (i): $E(Y)=N$
- plan (ii): $E(Y)=N\left(1-(1-p)^{k}\right)+m \approx m\left(\right.$ since $(1-p)^{k} \approx 1$ as $\left.p \rightarrow 0\right)$.
(e).

```
myfun<-function(p,m,k) m*k*(1-(1-p)^k)+m
##find the local minimum value for E(Y)
p=seq(0,0.1,by=0.001)
y=cbind(myfun(p,20000,5),myfun(p,10000,10),myfun(p,5000,20),myfun(p, 2000,50))
ymin=apply(y,1,which.min)
localmin=p[c(which(ymin==4) [2],which(ymin==2)[1],which(ymin==1) [1])]
## graphs of E(Y) as a function of p
par(mfrow=c (1,1))
curve(myfun(x,20000,5),0,0.2,col=1,ylim=c(0,100000) ,xlab="p",ylab="E(Y)")
curve(myfun(x,10000,10),0,0.2,col=2,xlab="p",ylab="E(Y)",add=T)
curve(myfun(x,5000,20),0,0.2,col=3,xlab="p",ylab="E(Y)",add=T)
curve(myfun(x,2000,50),0,0.2,col=4, xlab="p",ylab="E(Y)",add=T)
abline(v=localmin,lty=2, col=c(4,3,2))
text(0,6e4,"p=0.001")
text(0.012,8e4,"p=0.006")
text(0.03,1e5, "p=0.024")
legend("bottomright", legend=c(
    paste("m=20000, ","k=5"),paste("m=10000, ","k=10"),
    paste("m=5000, ","k=20"),paste("m=2000, ","k=50")
),col=1:4,lty=rep(1,4),seg.len = 1)
```


(f). It is possible to happen that the test is positive but the actual is negative and the test is negative but the actual is positive.

