STAT 509 Homework 3 Solution

Chong Ma

February 13, 2017

Problem 1

Note that $Y=$ amount of sapce in $\left(\mathrm{ft}^{3}\right)$ occupied in this container and the pdf of Y is

$$
f_{Y}(y)=\left\{\begin{array}{cc}
90 y^{8}(1-y), & 0<y<1 \tag{1}\\
0, & \text { otherwise }
\end{array}\right.
$$

Since

$$
\int_{0}^{y} 90 t^{8}(1-t) d t=\left.90\left(\frac{t^{9}}{9}-\frac{t^{10}}{10}\right)\right|_{0} ^{y}=10 y^{9}(1-0.9 y)
$$

then the cdf of Y is obtained by

$$
F_{Y}(y)=\int_{-\infty}^{y} f_{Y}(t) d t=\left\{\begin{array}{cl}
0, & y \leq 0 \\
10 y^{9}(1-0.9 y), & 0<y<1 \\
1, & y \geq 1
\end{array}\right.
$$

(a) Graph the pdf of Y

```
pdf<-function(y) ifelse(y>0 & y<1,90*y^8*(1-y),0)
cdf<-function(y) ifelse(y<=0, 0, ifelse(y<1, 10*y^9*(1-0.9*y),1))
par(mfrow=c(1,2))
curve(pdf,-0.2,1.2,xlab="y",ylab="pdf",lwd=2)
curve(cdf,-0.2,1.2,xlab="y",ylab="cdf",lwd=2)
```


(b) The probability that the contents of a randomly selected $1-\mathrm{ft}^{3}$ packing container will occupy less than $1 / 2$ of the volume of the container is calculated by

$$
P(Y<0.5)=F_{Y}(0.5)=10(0.5)^{9}(1-0.9(0.5))=0.0107422
$$

(c) The expected value and variance of Y exist in closed form, which are

$$
\begin{aligned}
E(Y) & =\int_{-\infty}^{\infty} y f_{Y}(y) d y=\int_{0}^{1} y\left(90 y^{8}(1-y)\right) d y \\
& =\left.90\left(\frac{1}{10} y^{1} 0-\frac{1}{11} y^{1} 1\right)\right|_{0} ^{1}=\frac{9}{11}
\end{aligned}
$$

Note that

$$
\begin{aligned}
E\left(Y^{2}\right) & =\int_{-\infty}^{\infty} y^{2} f_{Y}(y) d y=\int_{0}^{1} y^{2}\left(90 y^{8}(1-y)\right) d y \\
& =\left.90\left(\frac{1}{11} y^{1} 1-\frac{1}{12} y^{1} 2\right)\right|_{0} ^{1}=\frac{90}{132}
\end{aligned}
$$

thus, $\operatorname{Var}(Y)=E\left(Y^{2}\right)-[E(Y)]^{2}=\frac{90}{132}-\left(\frac{9}{11}\right)^{2}=0.0123967$
(d) To obtain the median, that is $\phi_{0.5}$ of Y, it solves the following eqaution

$$
F_{Y}\left(\phi_{0.5}\right)=10 \phi_{0.5}{ }^{9}\left(1-0.9 \phi_{0.5}\right)=0.5
$$

Since the equation involves a 10 degree polynomial with only one real root in $(0,1)$, we need solve it numerically. By using uniroot R fucntion, we get the median of Y is $\phi_{0.5}=0.8377$.

```
## get the objective function
obj<-function(y) cdf(y) - 0.5
## fint the root of F(y)-0.5 in the interval (0,1)
uniroot(obj,c(0,1))
## $root
## [1] 0.8377382
##
## $f.root
## [1] 3.418859e-06
##
## $iter
## [1] 7
##
## $init.it
## [1] NA
##
## $estim.prec
## [1] 6.103516e-05
```


Problem 2

Note that $Y \sim \operatorname{Uniform}(a, b)$, the pdf of Y is

$$
f_{Y}(y)= \begin{cases}\frac{1}{b-a}, & a<y<b \tag{2}\\ 0, & \text { otherwise }\end{cases}
$$

(a) The cdf of Y is

$$
F_{Y}(y)=\int_{-\infty}^{y} f_{Y}(t) d t= \begin{cases}0, & y \leq a \\ \frac{y-a}{b-a}, & a<y<b \\ 1, & y \geq b\end{cases}
$$

(b) Let us find the general formula for expected value and variance of $Y \sim \operatorname{Uniform}(a, b)$. The expected value of Y is

$$
E(Y)=\int_{-\infty}^{\infty} \frac{1}{b-a} y d y=\int_{a}^{b} \frac{1}{b-a} y d y=\left.\frac{1}{b-a}\left(\frac{1}{2} y^{2}\right)\right|_{a} ^{b}=\frac{a+b}{2}
$$

Also note that

$$
E\left(Y^{2}\right)=\int_{-\infty}^{\infty} \frac{1}{b-a} y^{2} d y=\int_{a}^{b} \frac{1}{b-a} y d y=\left.\frac{1}{b-a}\left(\frac{1}{3} y^{3}\right)\right|_{a} ^{b}=\frac{b^{3}-a^{3}}{3(b-a)}
$$

therefore, the variance of Y is

$$
\operatorname{Var}(Y)=E\left(Y^{2}\right)-[E(Y)]^{2}=\frac{b^{3}-a^{3}}{3(b-a)}-\left(\frac{a+b}{2}\right)^{2}=\frac{(b-a)^{2}}{12}
$$

When $a=0.01$ and $b=0.05$, using the derived formula,
(i) The mean and variance of $Y \sim \operatorname{Uniform}(0.01,0.05)$ is

$$
\begin{aligned}
E(Y) & =\frac{a+b}{2}=\frac{0.01+0.05}{2}=0.03 \\
\operatorname{Var}(Y) & =\frac{(b-a)^{2}}{12}=\frac{(0.05-0.01)^{2}}{12}=10^{-4}
\end{aligned}
$$

(ii) The probability that a particle has diameter larger than 0.045 cm is

$$
P(Y>0.045)=1-P(Y \leq 0.045)=1-F_{Y}(0.045)=1-\frac{0.045-0.05}{0.05-0.01}=0.125
$$

Problem 3

Note that $Y=$ the time until a major overhaul is needed and the pdf of Y is given by

$$
f_{Y}(y)=c e^{-y / 2} I(y>0)
$$

(a) Because $f_{Y}(y)$ is a pdf, then $\int_{-\infty}^{\infty} f_{Y}(y) d y=1$. Hence,

$$
\int_{-\infty}^{\infty} f_{Y}(y) d y=\int_{-\infty}^{\infty} c e^{-y / 2} d y=2 c=1
$$

That is, $c=1 / 2$.
(b) From part (a), we know that $Y \sim \operatorname{exponential}(\lambda=1 / 2)$. Therefore, the mean and variance of Y are

$$
\begin{aligned}
E(Y) & =\frac{1}{\lambda}=2 \\
\operatorname{Var}(Y) & =\frac{1}{\lambda^{2}}=4
\end{aligned}
$$

(c) The probability that the time to a major overhaul is longer than 3 years is

$$
P(Y>3)=1-P(Y \leq 3)=1-F_{Y}(3)=1-\left(1-e^{-\frac{1}{2}(3)}\right)=0.223
$$

Since the probability is about 0.223 , indiating that 3 years is the 22 th percentile of the time to a major overhaul, it should not be considered unusual.
(d) To get the 95 th percentile of this distribution is to solve the following equation

$$
F_{Y}\left(\phi_{0.95}\right)=1-e^{-\frac{1}{2} \phi_{0.95}}=0.95
$$

Therefore, $\phi_{0.95}=-2 \log (0.05)=5.9915$
(e) For a general exponential distribution $Y \sim \operatorname{exponential}(\lambda)$, the moment generation function(mgf) of Y is

$$
\begin{aligned}
E\left(e^{t Y}\right) & =\int_{0}^{\infty} e^{t y} \lambda e^{-\lambda y} d y=\frac{\lambda}{\lambda-t} \int_{0}^{\infty}(\lambda-t) e^{-(\lambda-t) y} d y \\
& =\frac{\lambda}{\lambda-t}=\left(1-\frac{t}{\lambda}\right)^{-1} \text { for } t<\lambda
\end{aligned}
$$

since $\int_{0}^{\infty}(\lambda-t) e^{-(\lambda-t) y} d y=1$ (the integrand is essentially a pdf that requires $\lambda-t>0$, that is, $t<\lambda$). Therefore, when $\lambda=1 / 2$, the $\mathbf{m g f}$ of Y turns out

$$
E\left(e^{t Y}\right)=\frac{1}{1-2 t}
$$

Problem 4

Note that $Y=$ the alkalinity concentration in ground water and $Y \sim \operatorname{Gamma}(\alpha=9.37, \lambda=0.16)$.
(a) The probability density function(pdf) and cumulative distribution function(cdf) of Y are given by

```
par(mfrow=c (1,2))
curve(dgamma(x, 9.37,0.16),0,150,1wd=1.5,xlab="y",ylab="pdf")
curve(pgamma(x,9.37,0.16),0,150,lwd=1.5,xlab="y",ylab="cdf")
```


(b) Recall the mean of Y is $E(Y)=\frac{\alpha}{\lambda^{2}}$, thus

$$
E(Y)=\frac{\alpha}{\lambda^{2}}=\frac{9.37}{0.16^{2}}=366.0156
$$

And the median of Y is $\operatorname{qgamma}(0.5,9.37,0.16)=56.49$
(c) The proportion of ground water samples near this landfill will have alkaliity concentrations less than 80 mg / L is

$$
P(Y<80)=\int_{0}^{80} \frac{0.16^{9.37}}{\Gamma(9.37)} y^{9.37-1} e^{-0.16 y} d y=\operatorname{pgamma}(80,9.37,0.16)=0.87
$$

(d) To find the 99th percentile of the distribution is to solve the following eqaution

$$
F_{Y}\left(\phi_{0.99}\right)=\int_{0}^{\phi_{0.99}} \frac{0.16^{9.37}}{\Gamma(9.37)} y^{9.37-1} e^{-0.16 y} d y=0.99
$$

Thus, $\phi_{0.99}=\operatorname{qgamma}(0.99,9.37,0.16)=111.97$. It means that only one percent of ground water samples near this landfill will have alkalinity concentration more than $111.97(\mathrm{mg} / \mathrm{L})$.

Problem 5

Note that $Y=$ the age at which the subject gave birth to her first child and $Y \sim \operatorname{Normal}(\mu=26.3, \sigma=$ 3.75).
(a) Graph the pdf and cdf of Y

```
par(mfrow=c (1,2))
curve(dnorm(x,26.3,3.75),12,42,xlab="y",ylab="pdf",lwd=1.5)
curve(pnorm(x,26.3,3.75),12,42,xlab="y",ylab="cdf",lwd=1.5)
```


(b) The probability that a mother gives birth to her first child after she is 35 years old is

$$
P(Y>35)=1-P(Y \leq 35)=1-\int_{-\infty}^{35} \frac{1}{\sqrt{2 \pi(3.75)}} e^{-\frac{1}{2}\left(\frac{y-26.3}{3.75}\right)^{2}} d y=1-\operatorname{pnorm}(35,26.3,3.75)=0.01
$$

(c) The proportion of first-time mothers give birth between 20 and 30 years is

$$
P(20<Y<30)=\operatorname{pnorm}(30,26.3,3.75)-\operatorname{pnorm}(20,26.3,3.75)=0.79
$$

(d) To get the 10th percentile of the age at which first-time mothers give birth is to solve the following function,

$$
F\left(\phi_{0.1}\right)=\int_{-\infty}^{\phi_{0.1}} \frac{1}{\sqrt{2 \pi(3.75)}} e^{-\frac{1}{2}\left(\frac{y-26.3}{3.75}\right)^{2}} d y=0.1
$$

that is, $\phi_{0.1}=\operatorname{qnorm}(0.1,26.3,3.75)=21.49$

