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Problem 1

(a) Note that the sample of n = 84 bearings is assumed being randomly selected from a population with
unknown population mean µ and unknown population variance σ2. Then, point estimators for µ and σ
are

µ̂ = Ȳ = 6810.3774

σ̂ = S =

√√√√ 1
n− 1

n∑
i=1

(Yi − Ȳ )2 = 9153.454

(b) Based on the Central Limit Theorem, the sampling distributino of sample mean Ȳ ∼ AN(µ, σ2

n ). Thus,
the standard error of the sample mean Ȳ is se(Ȳ ) = σ√

n
. Since σ is unknown and the sample standard

deviation S is an point estimator of σ, therefore a point estimator of the standard error of the sample
mean Ȳ is

ˆse(¯)Y = S√
n

= 998.7237

Problem 2

(a) The population can be considered as all of children in USA or all of children in SC. The sample is the
633 fourth-grade students selected from schools in Columbia, SC.

(b) The histogram of BMI for the 633 fourth-grade students appears unimodal and slightly right skewed.
An straightforward guess for the underlying distribution of BMI is a normal distribution. Nevertheless,
Gamma and Weibull distributions are also appealing candidates.

(c) Note that ȳ = 24.26 and s = 5.91,

• Under the normal assumption, that is, Y1, Y2, . . . , Yn
i.i.d∼ N(µ, σ2). Since E(Y ) = µ and Var(Y ) =

σ2,then a point estimator for µ and σ are

µ̂ = ȳ = 24.26, σ̂ = s = 5.91

• Under the Gamma assumption, that is, Y1, Y2, . . . , Yn
i.i.d∼ Gamma(α, λ). Note that E(Y ) = α

λ and
Var(Y ) = α

λ2 . Thus, point estimators for α and λ are

α̂ = ȳ2

s2 = 16.8445

λ̂ = ȳ

s2 = 0.6943

(d) Under the Gamma asumption, P (Y > 30) = 1− pgamma(30, 16.84, 0.69) = 0.1693, which is quite close
to 100/633(0.158).
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Problem 3

##inpute the data named after cheese
cheese=c(-0.541,-0.538,-0.532,-0.533,-0.526,

-0.543,-0.537,-0.528,-0.538,-0.549)
##density plot for t(9)
curve(dt(x,9),-4,4,xlab="x",ylab="density",main="PDF plot for t(9)")
abline(h=0)
points(3.851,0,pch=16)
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(a) The sample mean ȳ = mean(cheese) = −0.5365 and the sample standard deviation s = sd(cheese) =
0.007.

(b) Given µ = −0.545, the t-statistic is
t = ȳ − µ

s/
√
n

= 3.8508
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Since the t-statistic is 3.851, which locates on the far right-tail of the distribution t9, it implies that
under the hypothesized mean value µ = −0.545 there is a very small likelihood to observe such a sample.
Put in another way, the observed sample make the claimed mean value µ = −0.545 doubtful.

(c) The normal qqplot shows that the data points locate around a straight line and are all within the
bound, that is, there is no apparent evidence to support that the normality assmption is violated by
the cheese data.

qqPlot(cheese,distribution="norm",pch=16)
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Problem 4

Overall, this simulation tells us that the sampled data can never be perfectly matched with the theoretical
distribution because of the natural sampling variability. The departure for the sampled data from its
underlying theoretical distribution depends on how large the sampled data. The larger the sampled data, the
closer it is to the underlying distribuion.
(a)

# create 3 by 3 figure
op<-par(mfrow=c(3,3))
B = 9 # number of simulated data sets
n = 10 # sample size
# create matrix to hold all the data
# I removed the round function
# you don't have to print off the data
data = matrix(rnorm(n*B,0,1), nrow = B, ncol = n)
# for loop
# this creates a qq plot for each sample of data
for (i in 1:B){

qqPlot(data[i,],distribution = "norm",pch=16,cex=1.2,ylab=paste0("data",i))
}
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(b)

# create 3 by 3 figure
op<-par(mfrow=c(3,3))
B = 9 # number of simulated data sets
n = 100 # sample size
# create matrix to hold all the data
# I removed the round function
# you don't have to print off the data
data = matrix(rnorm(n*B,0,1), nrow = B, ncol = n)
# for loop
# this creates a qq plot for each sample of data
for (i in 1:B){

qqPlot(data[i,],distribution = "norm",pch=16,cex=1.2,ylab=paste0("data",i))
}
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# create 3 by 3 figure
op<-par(mfrow=c(3,3))
B = 9 # number of simulated data sets
n = 1000 # sample size
# create matrix to hold all the data
# I removed the round function
# you don't have to print off the data
data = matrix(rnorm(n*B,0,1), nrow = B, ncol = n)
# for loop
# this creates a qq plot for each sample of data
for (i in 1:B){

qqPlot(data[i,],distribution = "norm",pch=16,cex=1.2,ylab=paste0("data",i))
}
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