STAT 509 Homework 9 Solution

Chong Ma

April 30, 2017

Problem 1

First of all, input the data in R and conduct the linear regression analysis.

```
oxgen=c}(42.33,36.23,53.29,53.10,49.66,47.18,42.08,41.49,56.91
    50.06,46.17,47.80,42.45,46.18, 48.65,42.46, 43.21, 53.67,
    47.82,51.81,60.62,49.92,53.28,56.76)
time=c}(918,1045,743,805,810, 803, 891,927,683,962, 813, 844
    968, 858,755,907, 860,700,770,760,748,743,747,775)
fit1=lm(oxgen~time)
plot(time,oxgen,pch=16,xlab="time",ylab = expression(paste("Max ",0[2])))
abline(fit1,col="red")
```


(a) Note that $b_{0}=90.9$ and $b_{1}=-0.05$. The scatterplot with the fitted linear line shows that there is a decreasing trend between the two-mile run time and the maximum oxygen uptake, and the linear regression fits well for the data.
(b) Since the p-value for $\mathrm{H}_{0}: \beta_{1}=0$ is $1.46^{-6}<0.05$, reject $\mathrm{H}_{\text {}}$. We have sufficient evidence to conclude that the time it takes to run two miles have a significant influence on maximum oxygen.
(c) 90% confidence interval for $E(Y \mid X=900)$ is

```
predict(fit1,data.frame(time=900),level=0.9,interval="confidence")
## fit lwr upr
## 144.6943.1146.27
```

We are 90% confident that the population mean maximum oxygen uptake for men who run two miles in 900 seconds is between 43.1 and 46.27.
(d) 90% confidence interval for $Y \mid X=900$ is

```
predict(fit1,data.frame(time=900),level=0.9,interval="prediction")
## fit lwr upr
## 1 44.69 38.48 50.9
```

We are 90% confident that the maximum oxygen uptake for an individual male who runs two miles in 900 seconds is between 38.48 and 50.9.

Problem 2

First of all, input the data in R and conduct the linear regression analysis.

```
rocket=data.frame(matrix(c( 2158.70, 15.50, 1678.15, 23.75, 2316.00, 8.00,
    2061.30, 17.00, 2207.50, 5.00, 1708.30, 19.00,
    1784.70, 24.00, 2575.00, 2.50, 2357.90, 7.50,
    2277.70, 11.00, 2165.20, 13.00, 2399.55, 3.75,
    1779.80, 25.00, 2336.75, 9.75, 1765.30, 22.00,
    2053.50, 18.00, 2414.40, 6.00, 2200.50, 12.50,
    2654.20, 2.00, 1753.70, 21.50),20,2,byrow = TRUE))
colnames(rocket)=c("Strength","Age")
attach(rocket)
fit2=lm(Strength~Age,data = rocket)
summary(fit2)
##
## Call:
## lm(formula = Strength ~ Age, data = rocket)
##
## Residuals:
## Min 1Q Median 3Q Max
## -233.1 -52.5 28.7 66.1 106.2
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2625.39 45.35 57.9 < 2e-16 ***
## Age -36.96 2.97 -12.5 2.8e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 99.1 on 18 degrees of freedom
## Multiple R-squared: 0.896, Adjusted R-squared: 0.89
## F-statistic: 155 on 1 and 18 DF, p-value: 2.75e-10
```

```
plot(Age,Strength,pch=16,xlab="Age",ylab = "Strength")
abline(fit2,col="red")
```


(a) Note that $b_{0}=2625.385$ and $b_{1}=-36.96$. The scatterplot with the fitted linear line shows that there is a decreasing trend between the age of the propellants and the shear strength of bond, and the linear regression fits well for the data.
(b) Since the p-value for $\mathrm{H}_{0}: \beta_{1}=0$ is $2.75^{-10}<0.05$, reject $\mathrm{H}_{\text {}}$. We have sufficient evidence to conclude that the shear strngth of the bond is linearly related to the age of the propellant in the population.
(c) 90% confidence interval for $E(Y \mid X=20)$ is

```
predict(fit2,data.frame(Age=20),level=0.95,interval="confidence")
## fit lwr upr
## 1 1886 1824 1949
```

We are 90% confident that the population mean shear strength of a motor made from the propellant that is 20 weeks old is between 1823.78 and 1948.52.
(d) 90% confidence interval for $Y \mid X=900$ is

```
predict(fit2,data.frame(Age=20),level=0.95,interval="prediction")
```

$\begin{array}{lrrr}\text { \#\# } & & \text { fit } & \text { lwr } \\ \text { \#\# } & 1 & 1886 & 1669 \\ 2103\end{array}$

We are 90% confident that the shear strength of a motor made from an individual propellant that is 20 weeks old is between 1668.9 and 2103.4.

