Results

Conclusio

References

Genome-Wide Study of miRNA Regulated Gene Expressions Networks in Association with Emphysematous Lung Destruction

Chong Ma¹, Yen-Yi Ho², Stephanie Christenson³ and Richard Nho⁴

¹PhD Candidate, University of South Carolina
 ²Assistant Professor, University of South Carolina
 ³Assistant Professor, University of California at San Francisco
 ⁴Assistant Professor, University of Minnesota

Joint Statistical Meetings, August 2, 2017

Methodology

Results

Conclusio

Refe

References

COPD

Chronic Obstructive Pulmonary Disease (COPD)

Figure 1: COPD is a progressive fatal lung disease with the potential for major complications and is often eventually fatal.

				1.15	
NЛ	ot	11	12	ta	n
	0		<i>'</i> u		

Methodology

Results

Conclusio

References

COPD

- COPD is the third leading cause of death in U.S, but the precise mechanism of the development of COPD has not fully understood yet.
- Recent studies show that several microRNAs are deregulated in COPD patients and microRNA signature becomes altered based on the severity of COPD.
- microRNA is associated with various human diseases such as cardiovascular disease, idiopathic pulmonary fibrosis (IPF) and Alzheimer Disease.

Research Goal:

- whether the progression of severe emphysema from no emphysema alters microRNA signature.
- the relationship of altered microRNAs and their target mRNA changes in emphysema severity within an individual lung.

- six subjects has undergone lung transplantation for sever COPD and two subjects are donors without COPD.
- Each subject has up to 12 slices of lung from apex to bottom.
- For each slice of lung, the emphysema severity, 397 microRNA expression profiles, and 22011 mRNA expression profiles are measured.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- The measurements for some slices are not available.
- The data is available through GEO using GSE27597 and GSE49881.

Response: $y = \text{emphysema severity}(\log(\text{Lm}))$ Demographic: $x_1 = \text{COPD}$, $x_2 = \text{packyears}$, $x_3 = \text{age}$ $x_4 = \text{sex}$, $x_5 = \text{slices}$ miRNA: miRNA_j, j = 1, 2, ..., 397mRNA: mRNA_k, k = 1, 2, ..., 22011

Where

packyears = The number of packs of cigarettes consumed each year.
slice = A multi-level factor variable ranging from 2 to 13, refering to the position where it locates in lung from apex to base.

Motivation	Methodology	Results	Conclusion	Reference	References
	Nonlinoarity	atwoon ago	nackwaars	and II m	

Figure 2: lowess fitting for log(Lm) with packyears and age respectively

References

Random Intercepts of log(Lm)

Figure 3: Spaghetti plot for log(Lm) with slice for each subject. Slice 2 is the apex in lung and slice 13 is the bottom in lung. Subject 1 to 6 represent patients with COPD and subject 7 and 8 represent donors without COPD.

5.7	-			
IVI	οι	IV	aι	ion

Model Selection

Parsimonious Model for $\log(Lm)$	logLik	AIC
$COPD + packyears^* + age^* + sex + slice$	-0.70	41.39
$COPD + packyears^* + age^* + sex$	-8.14	34.28
$COPD + packyears^* + age^*$	-13.86	43.72
$COPD + packyears^*$	-17.71	47.41
COPD	-18.92	45.84

Table 1: Fits of parsimonious longitudinal models for log(Lm) with various demographic variable including packyears(number of packs of cigarettes consumed each year), age, sex and slice. Note age^{*} = age + (age - 61)₊ and packyears^{*} = packyears + (packyears - 25)₊ are used in model fittings, motivated by the exploratory study in figure 2.

ヘロト ヘ週ト ヘヨト ヘヨト æ

Step 1. Obtain p-values for 397 miRNAs, denoted by $p_j, j = 1, 2, ..., 397$, using likelihood ratio test based on the linear mixed effect models (1), (2).

$$lLm = u + \mathbf{x}'\boldsymbol{\beta} + \varepsilon, \tag{1}$$

$$lLm = u + \mathbf{x}'\boldsymbol{\beta} + \beta_{miR_j,Lm}miRNA_j + \varepsilon, \qquad (2)$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Methodology

Results

Conclusio

Reference

References

Weight-adjusted p-value method

Step 2. Calculate the weight matrix **W** in which each element w_{jk} represents to the extent that the jth miRNA is associated with the emphysema severity ILm by regulating the kth mRNA.

$$w_{jk} = \underbrace{\left(\frac{\hat{\beta}_{\mathrm{miR}_{j},\mathrm{mR}_{k}}}{SE(\hat{\beta}_{\mathrm{miR}_{j},\mathrm{mR}_{k}})}\right)^{2}}_{w_{\mathrm{miR}_{j},\mathrm{mR}_{k}}} \times \underbrace{\left(\frac{\hat{\beta}_{\mathrm{mR}_{k},\mathrm{lLm}}}{SE(\hat{\beta}_{\mathrm{mR}_{k},\mathrm{lLm}})}\right)^{2}}_{w_{\mathrm{mR}_{k}\mathrm{lLm}}}$$

Where $\hat{\beta}_{miR_j,mR_k}$ and $\hat{\beta}_{mR_k,lLm}$ are obtained from the linear mixed effect model (3) and (4), accordingly.

$$mRNA_{k} = u + \mathbf{x}'\boldsymbol{\beta} + \beta_{miR_{j},mR_{k}}miRNA_{j} + \beta_{lLm}lLm + \varepsilon$$
(3)

$$lLm = u + \mathbf{x}'\boldsymbol{\beta} + \beta_{mR_k, lLm} mRNA_k + \beta_{miR_j} miRNA_k + \varepsilon \quad (4)$$

・ロト ・ 日本・ 小田 ト ・ 田 ・ うらぐ

Motivation	Methodology	4	Results	Co	onclusion	Reference	References
	We	ight-ad	justed	p-va	alue metł	nod	
			mRNA				
	[w _{1,1}	<i>W</i> _{1,2}	W1,3		w _{1,22011})	
	W _{2,1}	W _{2,2}	W _{2,3}		W _{2,22011}	(microP	ΝΙΛ
VV —		÷	÷	۰.			NA
	W _{396,1}	W396,2	W396,3		W _{396,22011}	J	

step 3. Calculate $w_{\min R_j} = \max_k w_{jk}$ and assign the average scaled weight $w_{\min R_j}^* = \frac{w_{\min R_j}}{\overline{w_{\min R}}}$ to the jth miRNA, such that $w_{\min R}^* > 0$ and the average of all weights \overline{w}^* is 1 and $\overline{w_{\min R}}$ is the average of all $w_{\min R_j}$. Then, the weight-adjusted p-value for the jth miRNA is

$$\mathsf{Padj} = rac{p_j}{w^*_{\mathrm{miR}_j}}$$

Figure 4: Weight matrix. Rows are 34 top significant miRNAs in terms of p-values. Columns are 758 mRNAs which are the combined top 5 mRNAs that are most associated with the 397 miRNAs.

< ロ > < 同 > < 三 >

References

miRNA-mRNA regulation network

996

æ

Results

Conclusi

Refe

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

References

Gene Enriched Analysis

	ID	PathName	Pvalue	Odds	Expected
1	05320	Autoimmune thyroid disease	0.023	9.346	0.238
2	04672	Intestinal immune network for IgA production	0.024	9.117	0.243
3	05012	Parkinson's disease	0.025	5.265	0.633
4	04060	Cytokine-cytokine receptor interaction	0.041	3.374	1.324
5	04630	Jak-STAT signaling pathway	0.043	4.198	0.786

Table 2: Enriched KEGG pathway using 145 top genes regulated by the34 microRNAs that are most associated with ILm.

Motivation	Methodology	Results	Conclusion	Reference	References
		Conc	lusion		

- 1. Proposed a new linear mixed model to analyze COPD data by integrating the genotype and phenotype information.
- 2. Used the weight-adjusted p-value method to detect the significant microRNAs that are most associated with COPD while controlling the nominal Family-Wise Error Rate.
- 3. Discovered a new sparse regulation network between microRNA and mRNA that might be beneficial to unveil the pathogenesis of COPD.

4. Provided a new way to discover the regulation network between microRNA and mRNA for cancer disease.

Motivation	Methodology	Results	Conclusion	Reference	References
		Referen	ce l		

- Ho,Y.Y., Baechler, E.C., Ortmann, W., et al (2014) Using Gene Expression to Improve the Power of Genome-Wide Association Analysis, *Human Heredity*, **78(2)**, 94-103.
- Roeder K., Bacanu SA, Wasserman, L., Devlin B. (2006) Using linkage genome scans to improve power of association in genome scans, *Am J Hum Genet*, **78**, 243-252.
- Roeder K., Wasserman L. (2009) Genome-wide significance levels and weighted hypothesis testing, *Stat Sci*, **24**, 398-413.
- Christenson, SA, Brandsma, CA., Campbell DJ., et al (2013) miR-638 regulates gene expression networks associated with emphysematous lung destruction, *Genome Medicine*, **5(12)**, 114.
- Home S. (1979) A simple sequentially rejective multiple test procedure, *Scand J Stat*, **6**, 65-70.

- Benjaminin Y., Hochberg Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing, *J R Statis Soc*, **57**, 289-300.
- Bhattacharya S, Srisuma S, Demeo DL, et al (2009) Molecular biomarker for quantitative and discrete COPD phenotypes, *Am J Respir Cell Mol Biol*, **40**, 359-367.
- Ezzie ME, Crawford M, Cho JH, et al (2012) Gene expression networks in COPD: MicroRNA and mRNA regulation, *Thorax*, **67**, 122-131.
- Pottelberge GR., Mestdagh P., Bracke KR, et al (2011) MicroRNA expression in induced sputum of smokers and patients with chronic obstructive pulmonary disease, *Am J Respir Crit Care Med*, **183**, 898-906.

Motivation	Methodology	Results	Conclusion	Reference	References
		The E	nd		

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?