
Supervised Classification for Functional Data by
Estimating the Density of Multivariate Depth

Chong Ma – University of South Carolina
David B. Hitchcock – University of South Carolina

March 25, 2016

Ma / Hitchcock Supervised Classification for Functional Data by Estimating the Density of Multivariate Depth



What is functional data?

I High-frequency measurements (depend on monitoring
equipment).

I hand-writing data.
I spectral data.

I Smooth but complex processes.

I Repeated functional observations.

I Derivative information maybe useful.
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Example for functional data

Figure: Average daily temperature and precipitation records in 35 weather
stations across Canada (classical and often-used)
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Example for functional data

Figure: Records of number of eggs laid by Mediterranean Fruit Fly
(Ceratitis capitata) in each of 25 days (courtesy of H.-G. Mller).
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Goals in Functional Data Analysis

I Estimation of distribution of functional data.

I Prediction and classification of response variable (scalers,
vectors or functions) related to functional data.

I Relationship between derivatives of functions
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Supervised classification of functional data
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Figure: 20 records of two phonemes in log-periodogram at 150 frequency
points.
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Supervised Classification Format

I {xi (t), yi}, i = 1, . . . , n and yi ∈ G = {1, . . . ,G}.
I Given a training set of functional data with known group

memberships, predict the group membership for a new
functional observation.

I Toolbox
I Multivariate approaches: LDA, PDA, PCA, . . .
I Functional approaches: k-nearest neighbors, depth-based, . . .
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Depth Notion

I Mahalanobis depth (Mahalanobis, 1935; Liu and Singh, 1993)
MhD = {1 + (x− µ)′Σ−1(x− µ)}−1

I Half-space depth (HD) (Tukey, 1975)
HDF (x) = infH{PF (H) : H is a closed half space in Rd , x ∈
H}

I Simplicial depth (SD) (Liu, 1990)
SD(F , x) = PF (x ∈ S(X1, . . . ,Xd+1))
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Tukey’s Half Space Depth

The halfspace depth of a point p with respect to S ⊂ Rd is
defined as

depthS(p) = min
a∈Rd\{0}

|{q ∈ S |〈a,q〉 > 〈a,p〉}|

Figure: Tukey half space depth
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Simplicial Depth
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Figure: Simplicial Depth
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Modified Band Depth
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Figure: Modified Band Depth
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Modified Band Depth

I Denote a functional observation {x(t), t ∈ T } by x, where T
is compact. Without loss of generality, we set T as [0, 1].

Assume x1, . . . , xn
i .i .d∼ FX, where FX is the cumulative

distribution of the stochastic process X.

I The population version of modified band depth is

MBDJ(x) =
J∑

j=2

MBD(j)(x) =
J∑

j=2

E [λr (A(x; X1, . . . ,Xj))]

where

A(x; X1, . . . ,Xj) = {t ∈ T : min
i=1,...,j

Xi (t) ≤ x(t) ≤ max
i=1,...,j

Xi (t)}

and λr (A(x; X1, . . . ,Xj)) = λ(A(x; X1, . . . ,Xj))/λ(T )
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Modified Band Depth

I The sample version of MBD(j)(x) is

MBD
(j)
n (x) =

(
n

j

)−1 ∑
1≤i1<···<ij≤n

λr ({t ∈ T :

min
i=1,...,j

xi (t) ≤ x(t) ≤ max
i=1,...,j

xi (t)})

I MBD
(j)
n (x) is consistent to MBD(j)(x).

I The computation load for MBD
(j)
n (x) is O(nJ).
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Adjusted Modified Band Depth

I We propose an adjusted modified band depth for x
(AMBD(x)) in order to make it more sense statistically. And
we use bootstrapping method to estimate the population
version of AMBD(x).

I AMBDJ(x) = MBDJ(x) = E [λr (A(x; X1, . . . ,XJ))]
I AMBDJ

n (x) = 1
nb

∑nb
i=1 λr (A(x; x∗i1, . . . , x

∗
iJ))

I {x∗i1, . . . , x∗iJ} is a bootstrapping sample of size J from the
sample of n functional data, i = 1, . . . , nb. And we also have
AMBDJ

n (x)
a.s.
= AMBDJ(x) (see e.g. Cuevas, Febrero and

Fraiman 2005).

Ma / Hitchcock Supervised Classification for Functional Data by Estimating the Density of Multivariate Depth



Multivariate Depth

I The multivariate depth is formated for supervised
classification problem. {xi (t), yi}, i = 1, . . . , n and
yi ∈ G = {1, . . . ,G}. Given a new functional observation
x0 ∼ FX0 , assume FX0 ∈ {FX1 , . . . ,FXG

}, the multivariate
depth for x0 is defined by

MD(x0) = (AMBDFX1
(x0), . . . ,AMBDFXG

(x0))′

where
AMBDFXg

(x0) = E [λr (A(x0; X1, . . . ,XJ
i .i .d∼ FXg ))|X0 = x0]

I MD(x0) is a G -dimension “observation” from MD(X0) which
is a random vector related to FX0 .
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Multivariate Depth

I We assume MD(X0) follows a multivariate normal
distribution, i.e., MD(X0) ∼ NG (µ0,Σ0). It implies that
MD(Xg ) ∼ NG (µg ,Σg ) under the assumption of
X0 ∼ FX0 ∈ {FX1 , . . . ,FXG

}.
I Given G groups of observed functional data,
{xg1 , . . . , x

g
ng },g = 1, . . . ,G , we are able to calculate the

maximum likelihood estimators for µg and Σg .

µ̂g =
1

ng

ng∑
i=1

MD(xgi ) (1)

Σ̂g =
1

ng

ng∑
i=1

(MB(xgi )− µ̂g )(MB(xgi )− µ̂g )′ (2)
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Forensic Casework
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Figure: 12 blue acrylic textile fiber absorbance spectral data
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Forensic Casework
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Figure: Misclassification rate for forensic fiber data.
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