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Introduction

1.1 Definition and Motivation

Objects are everywhere – natural and man-made. Ad-

vances in technology have led to the routine collection

of geometrical information and the study of the shape of

objects is increasingly important. In particular, locating

points on objects is often straightforward and this course

primarily deals with the statistical shape analysis of such

point set data. Shape analysis is of great interest in a wide

variety of disciplines. Some specific applications follow

in Section 1.2 from biology, medicine, image analysis, ar-
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chaeology, geography, geology, agriculture and genetics.

The word ‘shape’ is very commonly used in everyday

language, usually referring to the appearance of an object.

Following D.G. Kendall (1977) the definition of shape that

we consider is intuitive.

Definition 1.1 Shape is all the geometrical information

that remains when location, scale and rotational effects are

filtered out from an object.

So, an object’s shape is invariant under the Euclidean

similarity transformations of translation, scaling and

rotation. For example, the shape of a human skull consists

of all the geometrical properties of the skull that are

unchanged when it is translated, rescaled or rotated in an

arbitrary coordinate system. Two objects have the same

shape if they can be translated, rescaled and rotated to
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each other so that they match exactly, i.e. if the objects are

similar. In Figure 1 the two mouse vertebrae outlines have

the same shape. In practice we are interested in comparing

objects with different shapes and so we require a way of

measuring shape, some notion of distance between two

shapes and methods for the statistical analysis of shape.

Sometimes we are also interested in retaining scale

information (size) as well as the shape of the object.

Definition 1.2 Size-and-shape is all the geometrical

information that remains when location and rotational

effects are filtered out from an object.

Two objects have the same size-and-shape if they can

be translated and rotated to each other so that they match

exactly, i.e. if the objects are rigid-body transformations of

each other.
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A common theme throughout the course is the geomet-

rical transformation of objects. The terms superimposi-

tion, superposition, registration, transformation, poseand

matching are often used equivalently for operations which

involve transforming objects, either with respect to each

other or into a specified reference frame.

 
  


Figure 1 Two outlines of the same second thoracic (T2) vertebra of a mouse, which

have different locations, rotations and scales but the sameshape.

An early writing on shape was by Galileo (1638). Galileo



INTRODUCTION 5

was aware that bones in larger animals are not purely

scaled up versions of those in smaller animals; there is a

shape difference too. A bone has to become proportionally

thicker so that it does not break under the increased

weight of the heavier animal, see Figure 2. The field of

geometrical shape analysis was initially developed from a

biological point of view by D’Arcy Thompson (1917), who

also discussed this application.

Figure 2 From Galileo (1638) illustrating the differences in shapesof the bones of small

and large animals.

How should a biologist wishing to investigate a shape



6 STATISTICAL SHAPE ANALYSIS

change proceed? Even describing an object’s shape is

difficult. In everyday conversation an object’s shape is

usually described by naming a second more familiar shape

which it looks like, e.g. a map of Italy is ‘boot shaped’.

This leads to very subjective descriptions that are clearly

unsuitable for any serious application. A practical way

forward is to locate a set of points on each object.

1.1.1 Landmarks

We will describe shape by locating a finite number of

points on each specimen which are called landmarks.

Definition 1.3 A landmark is a point of correspondence

on each object that matches between and within popula-

tions.

In the literature there have been various synonyms
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for landmarks, including vertices, anchor points, control

points, sites, profile points, ‘sampling’ points, design

points, key points, facets, nodes, model points, markers,

fiducial markers, markers, etc.

There are three basic types of landmarks in our applica-

tions: anatomical, mathematical and pseudo-landmarks.

An anatomical landmark is a point assigned by

an expert that corresponds between organisms in some

biologically meaningful way, e.g. the corner of an eye

or the meeting of two sutures on a skull. Anatomical

landmarks designate parts of an organism that correspond

in terms of biological derivation and these parts are called

homologous (for example, see Jardine, 1969). In Figure 3

we see some anatomical landmarks located on the skull of

a macaque monkey, viewed from the side. This application
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is described further in Section 1.2.8.

Figure 3 Anatomical landmarks located on the side view of a macaque monkey skull.

Mathematical landmarks are points located on an

object according to some mathematical or geometrical

property of the figure, e.g. at a point of high curvature or

at an extreme point. The use of mathematical landmarks is

particularly useful in automatic recognition and analysis.

Pseudo-landmarks are constructed points on an or-

ganism, located either around the outline or in between

anatomical or mathematical landmarks. For example,
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Lohmann (1983) took equally spaced points on the outlines

of micro-fossils. In Figure 4 we see six mathematical land-

marks at points of high curvature and 42 pseudo-landmarks

marked on the outline of a second thoracic (T2) mouse ver-

tebra. Continuous curves can be approximated by a large

number of pseudo-landmarks along the curve. Hence, con-

tinuous data can also be studied by the methods of this

course, although one needs to work with discrete approxi-

mations. Examples of such approaches include the analysis

of hand shapes in Grenander et al. (1991) and Mardia et al.

(1991), the resistors in Cootes et al. (1994) and the mito-

chondrial outlines in Grenander and Miller (1994). Also,

pseudo-landmarks are useful in matching surfaces, when

points can be located on a regular grid over each surface.

We can also demark landmarks into three further types.
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Figure 4 Grey level image of a T2 mouse vertebra with six mathematicallandmarks

(diamond round a +) and 42 pseudo-landmarks (+).
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Definition 1.4 Type I landmarks occur at the joins

of tissues/bones;type II landmarks are defined by

local properties such as maximal curvatures andtype

III landmarks occur at extremal points or constructed

landmarks, such as maximal diameters and centroids.

Anatomical landmarks are usually of type I or II and

mathematical landmarks are usually of type II or III.

Pseudo-landmarks are commonly taken as equi-spaced

along outlines between pairs of landmarks of type I or

II, and in this case the pseudo-landmarks are type III

landmarks. Type I landmarks are usually the easiest and

most reliable to locate and type III are the most difficult

and least reliable to locate.

A further type of landmark is thesemi-landmark which

is a point located on a curve and allowed to slip a small
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distance with respect to another corresponding curve. The

term ‘semi-’ is used because the landmark lies in a lower

number of dimensions than other types of landmarks, e.g.

along a one dimensional curve in a two dimensional image.

A further situation that may arise is the combination

of landmarks and geometrical curves. For example, the

pupil of the eye may be represented by a landmark at

the centre surrounded by a circle, with the radius as an

additional parameter. Yuille (1991) and Phillips and Smith

(1993, 1994) considered such representations for analysing

images of the human face.

Throughout most of this course the methodology is

appropriate for landmark data or other point set data.

Following Kendall (1984) our notation will be that there

arek landmarks inm dimensions, where we usually have
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k ≥ 3 andm = 2 or m = 3.

Definition 1.5 A label is a name or number associated

with a landmark, and identifies which pairs of landmarks

correspond when comparing two objects. Such landmarks

are calledlabelled landmarks.

The landmark with, say, label 1 on one specimen

corresponds in some meaningful way with landmark

1 on another specimen. A labelling is either naturally

apparent or an objective method of relabelling could

be used in certain situations. For example, in labelling

the anatomical landmarks on a skull the labelling

follows from the definition of the points. Alternatively,

in the study of micro-fossils Lohmann (1983) obtained

corresponding labels for the pseudo-landmarks on the

outline by minimizing a cross-correlation function. Most
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of the methods considered in this course are for labelled

configurations and when we refer to just ‘shape’ we

implicitly mean the shape of labelled landmarks.

Unlabelled landmarks are those where there is no

natural labelling correspondence between points on

different specimens. In this case a shape analysis

of the data is invariant under permutations of any

labelling. Current research topics include the development

of methods to deal with comparison of non-labelled

landmarks.

Example 1.1Consider the simple example in Figure 5.

The six triangles (A, B, C, D, E and F) are constructed from

triples of labelled points (1,2,3). Triangles A and B have

the same size and the same labelled shape because they

can be translated and rotated to be coincident. Triangle C
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has the same labelled shape as A and B (but has a larger

size) because it can be translated, rotated and rescaled to

be coincident with A and B. Triangle D has a different

labelled shape but, if ignoring the labelling, it has the same

unlabelled shape as A, B and C. Triangle E has a different

shape to D but it can be reflected and translated to be

coincident, and so D and E have the same reflection shape.

Triangle F has a different shape from all the rest.2

1.1.2 Traditional methods

To perform a shape analysis, a biologist traditionally

selects ratios of distances between landmarks or angles,

and then submits these to a multivariate analysis (e.g.

Rao, 1948). This approach has been called ‘multivariate

morphometrics’ in biology and a review is given by
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Figure 5 Six labelled triangles: A and B have the same size and

labelled shape; C has the same shape as A and B (but larger size); D

has a different shape but its labels can be permuted to give the same

shape as A, B, C; triangle E can be reflected to have the same shape

as D; triangle F has a different shape from A,B,C,D and E.
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Reyment et al. (1984, pp.120).

In the studies of multivariate morphometrics one deals

exclusively with positive variables (lengths, angles and

ratios of lengths). However, to consider just distances and

angles can be inferior to using the actual coordinates of

the landmarks, because the geometry is often thrown away

when using the former. Ratios of distances can easily be

calculated from coordinates whereas the converse is not

generally true. However, if enough distances are taken,

then a configuration can be reconstructed up to a reflection.

1.1.3 Geometrical methods

In the last two decades there have been many key

developments in shape analysis that allow us to work on

the landmark coordinates directly. Also, the advances in

technology of measuring landmarks have been helpful,
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e.g. landmarks from digitized objects. Of course if there

were no constraints on the landmarks, then we could use

standard multivariate analysis, but in general the statistical

methodology for shape is inherently non-Euclidean.

The idea is that, rather than working with quantities de-

rived from organisms, one works with the complete ge-

ometrical object itself (up to similarity transformations).

The approach is very much in the spirit of D’Arcy Thomp-

son (1917) who considered the geometric transformations

of one species to another (see, for example, Figure 6).

D’Arcy Thompson’s key ideas will be discussed in more

detail in Chapter 10, but the important point to note is that

he worked with geometrical pictures of organisms rather

than derived quantities. Throughout the course it will be

observed that pictures of the organisms or objects under
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study can always be easily constructed and it is this that

embodies our geometrical approach to shape analysis. In

many biological applications the statistical goal is infer-

ence, for example testing for shape difference. However,

the biological goal is to depict or describe the morpholog-

ical changes in a study, and this is a major strength of the

geometrical methods that we describe.

Figure 6 D’Arcy Thompson’s (1917) famous example of a species of fishDiodonbeing

geometrically transformed into another speciesOrthagoriscus.
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In particular, we shall consider a shape space obtained

directly from the landmark coordinates, which retains

the geometry of a point configuration. This approach to

shape analysis has been called ‘geometric shape analysis’

by various authors and the subject progressed rapidly

around the late 1970s/early 1980s. Earlier work following

D’Arcy Thompson (1917) included Medawar (1944) and

Sneath (1967), but credit for the major developments in

the last 20 years should go to D.G. Kendall and F.L.

Bookstein, who independently developed many of the

key ideas, in very different styles. Bookstein (1992) has

summarized his view of the history of geometrical shape

analysis, mainly through applications in biology. Kendall

(1989) has reviewed shape theory and its development

from a different, more theoretical, viewpoint, with
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applications in archaeology, astronomy and geography.

Kendall (1989,1995) provides some historical remarks

on his development of shape theory, and some of the

contributions of his colleagues. The first articles on the

subject were by Kendall (1977) and Bookstein (1978),

and some work in the area was also given by Ziezold

(1977). Some key papers in the field include Kendall

(1984, 1989), Bookstein (1986), Goodall (1991), Le and

Kendall (1993) and Kent (1994). Also, development in

non-i.i.d. distribution theory for shape started with Mardia

and Dryden (1989a).

1.2 Practical Applications

We now consider the description of several specific

applications that will be used throughout the course
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to illustrate the methodology. In biology and medicine

one wishes to study how shape changes during growth;

how shape changes during evolution; how shape is

related to size; how shape is affected by disease; how

shape is related to other covariates such as sex, age or

environmental conditions; how to discriminate and classify

using shape; and how to describe shape variability. Various

methodologies of multivariate analysis have been used to

answer such questions over the last 60 years or so. Many of

the questions in biology are the same as they have always

been and many of the techniques of shape analysis are

closely related to those in multivariate analysis. One of

the problems is that small sample sizes are often available

with a large number of variables. We shall describe

some new techniques that are not part of the general
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multivariate toolkit, especially techniques concerned with

visualization. As well as traditional biological applications

many new problems can be tackled with statistical shape

analysis, including automatic object recognition in image

analysis, where shape analysis is useful for prior modelling

of objects.

1.2.1 Biology: Mouse vertebrae

In an experiment to assess the effects of selection for

body weight on the shape of mouse vertebrae, three groups

of mice were obtained: Control, Large and Small. The

Control group contains unselected mice, the Large group

contains mice selected at each generation according to

large body weight and the Small group was selected for

small body weight. The bones form part of a much larger

study and these bones are from replicate E of the study



24 STATISTICAL SHAPE ANALYSIS

(Falconer, 1973; Truslove, 1976; Johnson et al., 1985,

1988; Mardia and Dryden, 1989b).

We consider the second thoracic vertebra T2. There

are 30 Control, 23 Large and 23 Small bones. The aims

are to assess whether there is a difference in size and

shape between the three groups and to provide descriptions

of any differences. Each vertebra was placed under a

microscope and digitized using a video camera to give

a grey level image, see Figure 4. The outline of the

bone is then extracted using standard image processing

techniques (for further details see Johnson et al., 1985)

to give a stream of about 300 coordinates around the

outline. Six landmarks were taken from the outline using

a semi-automatic procedure described by Mardia (1989a)

and Dryden (1989, Chapter 5) – an approximate curvature
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function of the smoothed outline is derived and the

mathematical landmarks are placed at points of high

curvature as measured by this function. In the example of

Figure 4 there are 6 landmarks and 42 pseudo-landmarks

located on the outline. In a second example in Figure 7 we

see again 6 landmarks but this time in between each pair of

landmarks 9 equally spaced pseudo-landmarks are placed.

We return to this application in Examples 2.2, 3.3, 4.1, 4.2,

5.2, 6.1, 6.4, 8.2, 10.13 and 12.4. The landmark data are

given in the Appendix.

1.2.2 Biology: Gorilla skulls

In an investigation to assess the cranial differences between

the sexes of apes, 29 male and 30 female adult gorilla

skulls were taken. The data are described in detail by

O’Higgins (1989) and O’Higgins and Dryden (1993).
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Figure 7 Six mathematical landmarks (+) on a second thoracic mouse vertebra, together

with 54 pseudo-landmarks around the outline, approximately equally spaced between

pairs of landmarks. The landmarks are 1 and 2 at maximum points of approximate

curvature function (usually at the widest part of the vertebra rather than on the tips), 3 and

5 at the extreme points of negative curvature at the base of the spinous process, 4 at the tip

of the spinous process, 6 at the maximal curvature point on the opposite side of the bone

from 4.
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Eight landmarks are chosen in the midline plane of each

skull as shown in Figure 8. The landmarks are anatomical

landmarks and are located by an expert biologist.

pr

ba o

l

b

n

na

st

Face

Braincase

Figure 8 Eight landmarks on the midline section of the ape cranium. The face region is

taken to be comprised of landmarks 7:nasion(n), 4:basion(ba), 5:staphylion(st), 1:

prosthion(pr) and 6:nariale (na). The braincase region is taken to be comprised of

landmarks 7, 4 and 8:bregma(b), 2: lambda(l) and 3:opisthion(o).

It is of interest to assess whether there is a size

difference between the sexes and whether there are any

shape differences between the sexes in the face and

braincase regions. A biologist would also be interested in
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geometrical descriptions of the shape difference, and how

shape relates to size and other covariates. We consider this

application in Examples 3.2, 7.2, 7.5, 10.6, 10.7, 10.8 and

10.9. The landmark data are given in the Appendix.

1.2.3 Medicine: Brain MR scans of schizophrenic patients

Bookstein (1996b) considers 13 landmarks taken on

near midsagittal two dimensional slices from Magnetic

Resonance (MR) brain scans of 14 schizophrenic patients

and 14 normal patients. It is of interest to study any shape

differences in the brain between the two groups, either

in average shape or in shape variability. If morphometric

differences between the two groups can be established,

then this should enable researchers to gain an increased

understanding about the condition. In Figure 9 we see the

13 landmarks on a two dimensional slice from a scan of
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a schizophrenic patient. We return to this application in

Examples 6.3, 7.4 and 10.2.

1.2.4 Image analysis: Postcode recognition

A random sample of handwritten British postcodes has

been collected and digitized. An example digit ‘3’ is shown

in Figure 10, taken from the data described by Anderson

(1997). It is of interest to automatically classify each of the

handwritten characters so that mail can be automatically

sorted. The problem is a classic one in image analysis

and many methods have been suggested, with varying

degrees of success; e.g. see Hull (1990). The location and

size of the characters are not so important for recognition

but orientation information may be crucial, e.g. an ‘M’

must not be confused with a ‘W’. Some recent successful

attempts at reading handwritten numbers include Hastie



30 STATISTICAL SHAPE ANALYSIS

Figure 9 The 13 landmarks on a near midsagittal brain scan of a schizophrenic patient

(after Bookstein, 1996b). The landmark positions are approximately located at each cross

(+): 1: splenium, posteriormost point on corpus callosum, 2: genu, anteriormost point on

corpus callosum, 3: top of corpus callosum, uppermost pointon arch of callosum (all three

landmarks registered to the diameter of the callosum), 4: top of head, a point relaxed from

a standard landmark along the apparent margin of the dura, 5:tentorium of cerebellum at

dura, 6: top of cerebellum, 7: tip of fourth ventricle, 8: bottom of cerebellum, 9: top of

pons, anterior margin, 10: bottom of pons, anterior margin,11: optic chiasm, 12: frontal

pole, extension of a line from 1 through 2 until it intersectsthe dura, 13: superior

colliculus.
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and Tibshirani (1992) and Simard et al. (1993). A related

topic is hand-drawn gesture recognition (see, for example,

Mardia et al., 1993).

Anderson (1997) obtained mathematical landmarks and

pseudo-landmarks on the digital images by hand, and in

particular for the digit 3 there were 13 landmarks, as shown

in Figure 10. It is of interest to examine the average shape

and variability in shape in the data, which can then be

used as a prior model for digit recognition from images

of handwritten postcodes. We return to this application in

Examples 5.3 and 7.1. The landmark data are given in the

Appendix.

1.2.5 Archaeology: Alignments of standing stones

Consider a map of the 52 megalithic sites that form the

‘Old Stones of Land’s End’ in Cornwall, England, given
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Figure 10 A handwritten digit ‘3’ from the postcode dataset, with 13 labelled

mathematical landmarks. Landmark 1 is at the extreme bottomleft, 4 is at the maximum

curvature of the bottom arc, 7 is at the extreme end of the central protrusion, 10 is at the

maximum curvature of the top arc and 13 is the extreme top leftpoint. Landmarks 2, 3, 5,

6, 8, 9, 11 and 12 are pseudo-landmarks at approximately equal intervals between the

mathematical landmarks.
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in Figure 11. It was proposed by Alfred Watkins, in the

early 1920s, that these and other megalithic sites were

placed in deliberate straight lines, called ley lines. One

approach is to consider the shapes of all possible triangles

and to see if there are more ‘flat’ triangles (triangles

with the largest angle close to 180 degrees) than expected

under a randomness hypothesis. A major difference here

compared with previous examples is that the points are

unlabelled, and in this dataset there are
(

52

3

)

triangles in

two dimensions.

This dataset is particularly important in the history

of shape analysis because it motivated D.G. Kendall’s

pioneering work. Analysis of these data is considered

by Broadbent (1980), Kendall and Kendall (1980), Small

(1988) and Stoyan et al. (1995) among others.
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Figure 11 The map of 52 megalithic sites (+) that form the ‘Old Stones ofLand’s End’

in Cornwall (from Stoyan et al., 1995).
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1.2.6 Geography: Central Place Theory

Central Place Theory was postulated by Christaller (1933)

and is the situation where towns are distributed on a

regular hexagonal lattice over a homogeneous area (with

towns at hexagon centres, see Figure 12). Mardia et al.

(1977) consider this hypothesis for a map of 44 places

in 6 counties in Iowa, namely Union, Ringgold, Clarke,

Decatur, Lucas and Wayne Counties.

In order to examine whether Central Place Theory holds,

one could examine the shapes of the triangles formed

by a town and its neighbours to see if they are more

equilateral than expected under a randomness hypothesis.

A convenient triangulation of the towns is a Delaunay

triangulation (Mardia et al., 1977; Green and Sibson,

1978). In Figure 12 we see that Voronoi polygons for ideal
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central places would be hexagons and Delaunay triangles

would be equilateral triangles (see Okabe et al., 1992, for

a detailed description of such tessellations). In Figure 13

we see a Delaunay triangulation and the Voronoi polygons

for the Iowa data. An important question to ask is: are

the Delaunay triangles more equilateral than expected by

chance?

The points here are unlabelled (there is no correspon-

dence in the vertices of the triangles). Also the triangles

are correlated due to neighbouring triangles sharing points.

The work of Mardia et al. (1977) led Kendall (1983, 1989)

to further study shape in Delaunay triangulations, in order

to investigate the Central Place Theory hypothesis. We re-

turn to this application in Example 12.7.
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Figure 12 The Voronoi polygons (unbroken lines) and Delaunay triangulation (broken

lines) for a completely regular configuration, i.e. ideal central places.

1.2.7 Geology: Microfossils

The microfossilGloborotalia truncatulinoidesis a micro-

scopic planktonic found in the ooze on the ocean bed.

Lohmann (1983) published 21 mean outlines of the micro-

fossil which were based on random samples of organisms

taken at different latitudes in the South Indian Ocean. Fig-

ure 14 shows the three mathematical landmarks selected
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Figure 13 The Voronoi polygons (unbroken lines) and Delaunay triangles (broken lines)

for the Iowa towns. The Voronoi polygons at the edges are not shown fully.
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on the outline. The coordinates of the 21 landmarks are

extracted from Figure 7 of Bookstein (1986). It is of inter-

est to examine whether the size of the organisms is related

to the shape, and whether size or shape are related to the

covariate of latitude. A more basic problem would be to

obtain an estimate of the average shape of the fossils and

to describe the structure of the shape variability. We return

to this application in Examples 6.2 and 8.1.

Figure 14 The outline of a microfossil with three landmarks (from Bookstein, 1986).
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1.2.8 Biology: Macaque skulls

In an investigation into sex differences in the crania of

a species of macaqueMacaca fascicularis(a type of

monkey) random samples of 9 male and 9 female skulls

were obtained (Dryden and Mardia, 1993). A subset of

seven anatomical landmarks was located on each cranium

and the three dimensional coordinates of each point were

recorded.

It is of interest to assess whether there are any size

and shape differences between the sexes. If there are

any differences, then a description of the differences is

required. An artist’s impression of the three dimensional

skull with the anatomical landmarks is given in Figure 15.

We return to this application in Examples 4.3, 5.1, 5.4 and

7.3.
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(a)
 (b)


(c)


Figure 15 A three dimensional macaque skull: (a) side view, (b) frontal view, (c) bottom

view. A total of 26 landmarks are displayed on the skull and a subset of 7 was taken for

the analysis. The seven chosen landmarks are 1.prosthion, 7. opisthion, 10.bregma, 12.

nasion, 15.asterion, 16.midpoint of zyg/temp suture, 17. interfrontomalare.
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1.2.9 Biology: Sooty mangabeys

Twelve landmarks are taken from the midline of the skulls

of another type of monkey, sooty mangabey (Cercocebus

atys), in a study described by O’Higgins and Dryden

(1992), see Figure 16. The specimens ranged from young

juveniles to an adult female and an adult male. The

objective is to describe the size and shape differences in

the individuals in the series from the young juveniles to the

older juveniles, and then to the adults. A further problem is

to examine whether the individuals can be modelled by a

regression line in shape space. We return to this application

in Examples 3.1 and 10.4.
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Figure 16 The 12 landmarks on the midline of the skull of a juvenile sooty mangabey.

The chosen landmarks arenasion(n), rhinion (r), nariale (na),prosthion(pr), incisive

canal(i), palatine junction(p), posterior nasal spine(pns),basisphenoid(bs),basion(ba),

opisthion(o), lambda(l), bregma(b).
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1.2.10 Agriculture: Fish recognition

Mardia et al. (1996f) consider the automatic location of

fish in images. An underwater camera captures images of

the fish and the aim is to identify the fish in the images

and to automatically obtain information about the size and

shape distribution of the fish. An example image is given

in Figure 17.

Figure 17 An underwater image of fish in a tank.

By using a geometrical template, prior information about
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the average shape and shape variability of fish can be

modelled to assist with recognition. We return to this

application in Example 11.2.

1.2.11 Agriculture: Robotic harvesting of mushrooms

Mardia et al. (1996g) consider the problem of automati-

cally recognizing mushrooms in an image such as that in

Figure 18. The ultimate aim is to design a robot to har-

vest the mushrooms and an essential component will be

the successful recognition of the mushrooms in the image,

using prior size and shape information. We consider this

application in Examples 11.3 and 11.5.

1.2.12 Genetics: Electrophoretic gels

A technique for the identification of proteins involves the

comparison of electrophoretic gel images. Two examples
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Figure 18 An image of mushrooms ready for harvesting.

of such images are gel A and gel B shown in Figure 19. The

images were obtained from particular strains of parasites

which carry malaria. The objective is to use the gel image

to be able to identify the strain of parasite.

In each gel there are a number of black spots, where

each spot can be one of two types – invariant or variant.

The invariant spots are present for all parasites and the

arrangement of variant spots enables identification of the

parasite. A problem with the technique when used in the
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(a)
 (b)


Figure 19 The electrophoretic gel images from (a) gel A and (b) gel B (after Horgan et

al., 1992). The invariant spots are marked with a ‘+’ in both images.

field is that the gels are prone to deformations and so the

gel images first need to be ‘registered’ (transformed) so

that direct comparisons can be made.

In this application, 10 invariant spots have been picked

out by an expert, as shown in Figure 19. The invariant spots

are used to match gel A to gel B, either by a similarity

transformation or by a more complicated transformation. A
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question of interest is: can a matching procedure be made

resistant to some outlier points, e.g. mislabelled points?We

return to this application in Examples 12.2 and 12.3.


