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Shape Space and Distances

In this chapter we investigate further geometrical aspects

of shape. This chapter and Chapter 5 extend and formalize

the material from Chapter 3. We shall consider a briefer

version of the material than can be found in the book

Dryden and Mardia (1998).

4.1 Shape Space

4.1.1 Introduction

We have already noted that the shape of an object is given

by the geometrical information that remains when we filter

out translation, rotation and scale information.



SHAPE SPACE AND DISTANCES 121

A rotation of a configuration is given by post-

multiplication of the configuration matrixX by a rotation

matrix Γ.

Definition 4.1 Anm×m rotation matrix satisfiesΓTΓ =

ΓΓT = Im and |Γ| = +1. The set of allm × m rotation

matrices is known as the special orthogonal groupSO(m).

A translation is obtained by adding a constantm-vector

to the coordinates of each point. An isotropic scaling is

obtained by multiplyingX by a positive real number.

Definition 4.2 The Euclidean similarity transforma-

tions of a configuration matrixX are the set of translated,

rotated and isotropically rescaledX, i.e.

{βXΓ + 1kγ
T : β ∈ IR+, Γ ∈ SO(m), γ ∈ IRm}, (4.1)

whereβ ∈ IR+ is the scale,Γ is a rotation matrix andγ is
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a translationm-vector.

Definition 4.3 The rigid-body transformations of a

configuration matrixX are the set of translated and

rotatedX, i.e.

{XΓ + 1kγ
T : Γ ∈ SO(m), γ ∈ IRm}, (4.2)

whereΓ is a rotation matrix andγ is a translationm-

vector.

For m = 2 we can use complex notation as in Chapter

3. Considerk ≥ 3 landmarks inC, zo = (zo
1, . . . , z

o
k)

T

which are not all coincident. The Euclidean similarity

transformations ofzo are

{ηzo + 1kξ : η = βeiθ ∈ C, ξ ∈ C},

where β ∈ IR+ is the scale,0 ≤ θ < 2π is the

rotation angle andξ ∈ C is the translation. Hence,
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the Euclidean similarity transformations ofzo are the set

of the same complex linear transformations applied to

each landmarkzo
j . Specifying the Euclidean similarity

transformations as complex linear transformations leads

to great simplifications in shape analysis for the two

dimensional case, as we have seen in the previous chapter.

We could consider the shape ofX as the equivalence

class of the full set of similarity transformations of

a configuration. Alternatively we could filter out the

similarity transformations from the configuration in a

systematic manner. We shall adopt the latter approach.

If all k points are coincident, then this has a special shape

that must be considered as a separate case. The coincident

case is not generally of interest.
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4.1.2 Filtering translation

In order to represent shape it can be convenient to remove

the similarity transformations one at a time. Translation

is the easiest to filter fromX and can be achieved by

considering contrasts of the data, i.e. pre-multiplying bya

suitable matrix. We can make a specific choice of contrast

by pre-multiplying X with the Helmert sub-matrix of

Equation (2.9).

We write

XH = HX ∈ IR(k−1)m \ {0} (4.3)

(the origin is removed because coincident landmarks are

not allowed) and we refer toXH as theHelmertized

landmarks.

The centred landmarks are an alternative choice for
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removing location and are given by

XC = CX. (4.4)

We can revert back to the centred landmarks from the

Helmertized landmarks by pre-multiplying byHT, as

HTH = Ik −
1

k
1k1

T
k = C

and so

HTXH = HTHX = CX.

4.1.3 Pre-shape

We saw in Section 3.2 that in computing a distance

between shapes it is necessary to standardize for size. We

standardize for size by dividing through by our notion of

size. We choose the centroid size (see Equation (2.2))
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which is also given by

‖XH‖ =
√

trace(XTHTHX) =
√

trace(XTCX) = ‖CX‖ = S(X),

(4.5)

since HTH = C is idempotent. Note thatS(X) >

0 because we do not allow complete coincidence of

landmarks. The pre-shape of a configuration matrixX has

all information about location and scale removed.

Definition 4.4 Thepre-shapeof a configuration matrixX

is given by

Z =
XH

‖XH‖
=

HX

‖HX‖ (4.6)

which is invariant under the translation and scaling of the

original configuration.

An alternative representation of pre-shape is to initially

centre the configuration and then divide by size. The
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centred pre-shapeis given by

ZC = CX/‖CX‖ = HTZ (4.7)

sinceC = HTH. Note thatZ is a (k − 1) × m matrix

whereasZC is ak × m matrix.

Important point: Both pre-shape representations are

equally suitable for the pre-shape space which has real

dimension(k − 1)m− 1. The advantage in usingZ is that

it is of full rank and the dimension is less than that ofZC

(although of course they have the same rank). On the other

hand, the advantage of working with the centred pre-shape

ZC is that a plot of the Cartesian coordinates gives a correct

geometrical view of the shape of the original configuration.

Definition 4.5 The pre-shape spaceis the space of all

possible pre-shapes. Formally, the pre-shape spaceSk
m
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is the orbit space of the non-coincidentk point set

configurations inIRm under the action of translation and

isotropic scaling.

The pre-shape spaceSk
m ≡ S(k−1)m−1 is a hypersphere of

unit radius in(k − 1)m real dimensions, since‖Z‖ = 1.

The term ‘pre-shape’ signifies that we are one step away

from shape – rotation still has to be removed. The term

was coined by Kendall (1984).

4.1.4 Shape

In order to also remove rotation information from the

configuration we identify all rotated versions of the pre-

shape with each other, and this set or equivalence class is

the shape ofX. An alternative definition of the shape ofX

is
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Definition 4.6 Theshapeof a configuration matrixX is

all the geometrical information aboutX that is invariant

under location, rotation and isotropic scaling (Euclidean

similarity transformations). The shape can be represented

by the set[X] given by

[X] = {ZΓ : Γ ∈ SO(m)}, (4.8)

whereSO(m) is the special orthogonal group of rotations

andZ is the pre-shape ofX.

Definition 4.7 Theshape spaceis the set of all possible

shapes. Formally, the shape spaceΣk
m is the orbit space of

the non-coincidentk point set configurations inIRm under

the action of the Euclidean similarity transformations.

Important point: The dimension of the shape space is

M = km − m − 1 − m(m − 1)

2
,
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and this can be simply seen as we initially havekm

coordinates and then must losem dimensions for location,

one dimension for uniform scale and12m(m − 1) for

rotation.

The shape ofX is a set – an equivalence class under

the action of the group of similarity transformations. In

order to visualize shapes it is often convenient to choose

a particular member of the shape set[X].

Definition 4.8 An icon is a particular member of the shape

set[X] which is taken as being representative of the shape.

The word icon means ‘image or likeness’ and it is

appropriate as we use the icon to picture a representative

figure from the shape equivalence class which has

‘likeness’ to the other members (i.e. the objects of the class

are all similar). The term was first used by Goodall (1995).
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The centred pre-shapeZC is a suitable choice of icon.

4.1.5 Size-and-shape: Removing location and rotation

We could change the order of quotienting out the

similarity transformations or only remove some of the

transformations. For example, if location and rotation are

removed but not scale, then we have the size-and-shape of

X.

Definition 4.9 The size-and-shape of a configuration

matrix X is all the geometrical information aboutX

that is invariant under location and rotation (rigid-body

transformations), and this can be represented by the set

[X]S given by

[X]S = {XHΓ : Γ ∈ SO(m)}, (4.9)

whereXH are the Helmertized coordinates of Equation
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(4.3). The space of all size-and-shapes is called thesize-

and-shape spaceand is denoted bySΣk
m, for k points in

m dimensions. The size-and-shape space is the orbit space

of the configuration space under the action of translation

and rotation.

Size-and-shape has also been called theform . We discuss

size-and-shape in more detail in Chapter 8.

If size is removed from the size-and-shape (e.g. by

rescaling to unit centroid size), then we obtain the shape

of X,

[X] = [X]S/S(X) = {ZΓ : Γ ∈ SO(m)},

as in Equation (4.8).
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4.1.6 Reflection shape

We can also include invariances under reflections for shape

or size-and-shape.

Definition 4.10 The reflection shapeof a configuration

matrix X is all the geometrical information that is in-

variant under the similarity transformations and reflection.

The reflection shape can be represented by the set

[X]R = {ZR : R ∈ O(m)}

whereO(m) is the set ofm × m orthogonal matrices,

satisfyingRTR = Im = RRT and |R| = ±1, andZ is

the pre-shape.

Definition 4.11 The reflection size-and-shapeof a con-

figuration matrixX is all the geometrical information that

is invariant under translation, rotation and reflection. The
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reflection size-and-shape can be represented by the set

[X]RS = {XHR : R ∈ O(m)}

whereO(m) is the set ofm × m orthogonal matrices and

XH are the Helmertized coordinates.

Important point: With quite a wide variety of terminol-

ogy used for the different spaces it may be helpful to refer

to Figure 38 where we give a diagram indicating the hier-

archies of the different spaces.

4.2 Distances

4.2.1 Procrustes distances

A concept of distance between two shapes is required to

fully define the non-Euclidean shape metric space. We

shall primarily concentrate on the full Procrustes distance,

which was introduced for the two dimensional case in
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Helmertized/Centred

Original Configuration

Pre-shape Size-and-shape 

Shape

remove translation

remove rotationremove scale

remove rotation

Reflection shape 

Reflection size-and-shape

remove scale

remove reflection

remove reflection

Figure 38 The hierarchies of the various spaces (after Goodall and Mardia, 1992).
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Section 3.2.

Consider two configuration matrices fromk points in

m dimensionsX1 and X2 with pre-shapesZ1 and Z2.

We minimize over rotations and scale to find the closest

Euclidean distance betweenZ1 andZ2.

Definition 4.12 Thefull Procrustes distancebetweenX1

andX2 is

dF (X1, X2) = inf
Γ∈SO(m),β∈IR

‖Z2 − βZ1Γ‖ , (4.10)

whereZr = HXr/‖HXr‖, r = 1, 2.

Result 4.1The full Procrustes distance is

dF (X1, X2) =











1 −




m
∑

i=1

λi





2










1/2

, (4.11)

whereλ1 ≥ λ2 ≥ . . . ≥ λm−1 ≥ |λm| are the square

roots of the eigenvalues ofZT
1 Z2Z

T
2 Z1, and the smallest
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valueλm is the negative square root iffdet(ZT
1 Z2) < 0.

The minimizing rotation is given by

Γ̂ = UV T, (4.12)

whereU, V ∈ SO(m) and ZT
2 Z1 = V ΛUT with Λ =

diag(λ1, λ2, . . . , λm). The minimizing scale is

β̂ =
m
∑

i=1

λi.

Proof:

See Dryden and Mardia (1998, p62).

2

We shall primarily concentrate on using the full

Procrustes distance in the shape space, because this is a

statistically natural measure of shape distance (see Section
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3.2). Note that

0 ≤
m
∑

i=1

λi ≤ 1

and so

0 ≤ dF ≤ 1.

4.2.2 Alternative distances

Alternative distances in shape space could be suggested.

In Figure 39 we see a diagrammatic view of the pre-

shape sphere. Since the pre-shape sphere is a hypersphere

embedded inIR(k−1)m we could consider familiar distances

between two points on a sphere, such as the great circle

distance or the chordal (Euclidean) distance. Since the

shapes of configurations are represented by fibres on the

pre-shape sphere, we can define the distance between two

shapes as the closest distance between the fibres on the pre-
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shape sphere. In Figure 39 two minimum distances have

been drawn between the fibres (shapes),ρ is the closest

great circle distance anddP the closest chordal distance.

Z 1

Z 2

[X  ] 1

ρ

d  P

[X   ]2

Figure 39 A diagrammatic simplistic view of two fibres[X1] and[X2] on the pre-shape

sphere, which correspond to the shapes of the original configuration matricesX1 andX2

which have pre-shapesZ1 andZ2. Also displayed are the smallest great circleρ and

chordal distancesdP between the fibres.

Definition 4.13 The partial Procrustes distance dP is

obtained by matching the pre-shapesZ1 andZ2 of X1 and
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X2 as closely as possible over rotations, but not scale. So,

dP (X1, X2) = inf
Γ∈SO(m)

‖Z2 − Z1Γ‖,

whereZj = HXj/‖HXj‖, j = 1, 2.

Result 4.2The partial Procrustes distance is given by

dP (X1, X2) =
√

2



1 −
m
∑

i=1

λi





1/2

. (4.13)

Proof: By keepingβ = 1 fixed throughout the proof of

Result 4.1, and just minimizing overΓ. 2

Note the optimal rotation is the same whether or not

scaling is in the minimization.

Definition 4.14 TheProcrustes distanceor Riemannian

metric ρ(X1, X2) is the closest great circle distance
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betweenZ1 andZ2 on the pre-shape sphere, whereZj =

HXj/‖HXj‖, j = 1, 2. The minimization is carried out

over rotations.

From trigonometry one can see that the Procrustes

distance is

ρ(X1, X2) = 2arcsin(dP (X1, X2)/2) = arccos





m
∑

i=1

λi



 .

(4.14)

In Figure 40 we see a cross-section of the pre-shape

sphere illustrating the relationships betweendF , dP andρ.

Indeed

dF (X1, X2) = sin ρ,

dP (X1, X2) = 2 sin(ρ/2).
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Important point: Note thatρ can be considered as the

smallest angle between the complex vectorsZ1 andZ2 over

rotations ofZ1 andZ2.

1 1

ρ

ρ/2

F

/2
P

d

d

Figure 40 Section of the pre-shape sphere, illustrating the relationship between the

Procrustes distancesdF , dP andρ.

Important point: For shapes which are close together

there is very little difference between the shape distances,
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since

dP = dF + O(d3
F ) , ρ = dF + O(d3

F ).

Consequently for many practical datasets with small

variability there is very little difference in the analyses

when using different Procrustes distances. However, the

distinction between the distances is worth making and the

terminology is summarized in Table 1.

Distance Notation Formula Range

Full Procrustes distance dF {1 − (
∑m

i=1 λi)
2}1/2 0 ≤ dF ≤ 1

Partial Procrustes distance dP
√

2(1 − ∑m
i=1 λi)

1/2 0 ≤ dP ≤ √
2

Procrustes distance ρ arccos(
∑m

i=1 λi) 0 ≤ ρ ≤ π/2

Table 1 Procrustes distances in the shape space.


