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Shape Distributions and
Inference

Of fundamental interest are probability distributions in

shape spaces, which provide models for shape analysis.

There are several issues to consider and there are various

difficulties to overcome. Since the shape space is non-

Euclidean special care is required.

6.1 Uniform Distribution

Result 6.1 Using Kendall coordinatesU = (UK
3 , ..., UK

k , V K
3 , ..., V K

k )T

we have the ‘uniform’ density on the shape space given by
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f∞(u) =
(k − 2)!π

{π(1 + uTu)}k−1
. (6.1)

If the original landmarks are independent identically

distributed with a rotationally symmetric distribution, then

the resulting shape distribution is uniform in the shape

space.

6.1.1 The offset normal distribution in two dimensions

An i.i.d. model (with the same mean for each point) is often

not appropriate. For example, in many applications one

would be interested in a model with different means at each

landmark. The first extension that we consider is when

the landmarks(Xj, Yj)
T, j = 1, . . . , k, are independent

isotropic bivariate normal, with different means but the
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same variance at each landmark. The isotropic normal

model is

X = (X1, . . . , Xk, Y1, . . . , Yk)
T ∼ N2k(µ, σ2I2k), (6.2)

where µ = (µ1, . . . , µk, ν1, . . . , νk)
T. This model

is particularly appropriate when the major source of

variability is measurement error at each landmark. For

example, consider Figure 65 where the points of a

triangle are independently perturbed by isotropic normal

errors. We wish to find the resulting perturbed shape

distribution, using say Bookstein or Kendall coordinates

after translating, rotating and rescaling two points to a fixed

baseline.
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We shall also use the variance parameter

τ 2 = σ2/‖µ2 − µ1‖
2,

which is particularly useful when working with Bookstein

or Kendall co-ordinates.
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(b)

Figure 65 The isotropic model is appropriate for independent isotropically perturbed

landmarks (a). The resulting shape distribution can be thought of as the distribution of the

landmarks after translating, rotating and rescaling so that the baseline is sent to a fixed

position (b).

Result 6.2 The offset normal shape density under the
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isotropic normal model of Equation (6.2), with respect to

the uniform measure in the shape space, is

1F1{2−k; 1;−κ(1+cos 2ρ(X, µ))} exp{−κ(1−cos 2ρ(X, µ))},

(6.3)

where

κ = S2(µ)/(4σ2)

is a concentration parameter,S(µ) is the population

centroid size,ρ is the Procrustes distance between the

observed shape[X] and the population shape[µ], and the

confluent hypergeometric function1F1(·) is given by

1F1(a; b; x) = 1+
a

b

x

1!
+

a(a + 1)

b(b + 1)

x2

2!
+

a(a + 1)(a + 2)

b(b + 1)(b + 2)

x3

3!
+...

(6.4)
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6.2 Likelihood-based Inference

Inference can be carried out using maximum likelihood

estimators or Bayesian inference, provided we can specify

some suitable distributions in the shape space.

Let uK
1 , . . . , uK

n be independent observations from a

distribution with densityf(u; θ, τ) with mean shapeθ and

variation parameterτ , then the likelihood is given by

L(uK
1 , . . . , uK

n ; θ, τ) =
n∏

i=1

f(uK
i ; θ, τ).

The maximum likelihood estimator of shape is then given

by

θ̂ = argsupθ L(uK
1 , . . . , uK

n ; θ, τ).

If we have some prior knowledge aboutθ, τ which we

can express with a prior densityπ(θ, τ), then Bayesian
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inference can proceed by using the posterior density

π(θ, τ |u1, . . . , un) ∝ π(θ, τ)L(uK
1 , . . . , uK

n ; θ, τ).

6.2.1 A Rotationally Symmetric Shape Family

A rotationally symmetric family of shape distributions can

be obtained with densities as functions of shape distance to

a mean configuration. The class of densities is given by

cφ(κ)−1 exp(−κφ(d2
F )),

whereφ(·) ≥ 0 is a suitable penalty function, and it is

assumed thatφ(dF ) is an increasing function ofdF and

φ(0) = 0.

A particular sub-class is given by the densities with

φ(d2
F ) = (1 − (1 − d2

F )h)/h, (6.5)

which give the same MLE as a class of shape estimators

proposed by Kent (1992). The estimators become more
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resistant to outliers ash increases.

A density in this form is given, with respect to the

uniform measure, is proportional to

exp(κ cos 2ρ), (6.6)

whereρ is the Procrustes distance from the observed shape

to the mean shape. The MLE of the mean shape is the same

as the full Procrustes estimator of the mean shape. Ifk = 3,

then the density reduces to

κ

4π2 sinh(κ)
exp(κ cos 2ρ)

which is the Fisher distribution on the shape sphere.

An alternative distribution withh = 1
2

is the distribution

with density proportional to

exp(4κ cos ρ), (6.7)

where the mean shape is the same as the partial Procrustes
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mean. We call this distribution the partial Procrustes shape

distribution.

Both of the distributions of Equations (6.6) and (6.7) are

asymptotically normal asκ → ∞ and uniform ifκ = 0.

6.2.2 Likelihood ratio tests

We can write down likelihood ratio tests for various

problems, e.g. testing for differences in shape between

two independent populations or for changes in variation

parameter. Large sample standard likelihood ratio tests can

be carried out in the usual way, using Wilks’ theorem.

Consider, for example, testing whetherH0 : Θ ∈ Ω0,

versusH1 : Θ ∈ Ω1 , whereΩ0 ⊂ Ω1 ⊆ IR2k−4, with

dim(Ω0) = p < 2k − 4 and dim(Ω1) = q ≤ 2k − 4 Let

−2 log Λ = 2 sup
H1

log L(Θ, τ) − 2 sup
H0

log L(Θ, τ)
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then according to Wilks’ theorem−2 log Λ ≈ χ2
q−p under

H0, for large samples (under certain regularity conditions).

If we had chosen different shape coordinates for the

mean shape, then inference would be identical as there

is a 1-1 linear correspondence between Kendall (or

Bookstein) coordinates as seen in Equation (2.11). Also,

if a different baseline was chosen, then there is a 1-

1 correspondence between Kendall’s coordinates and the

alternative shape parameters. Therefore, any inference will

not be dependent upon baseline or coordinate choice with

this exact likelihood approach.

Example 6.1 Consider the schizophrenia data described in

Section 1.2.3. The isotropic model could be considered

reasonable for these data, because the Procrustes scatter

plots are roughly circular and there are no strongly
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Figure 66 The exact isotropic MLE mean shapes for the schizophrenic patients (S) and

control group (C), pictured in Bookstein coordinates with baseline 2, 1 (x).
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dominant principal components (see later in Example

7.4). So, we consider the shape variables in groupg

to be random samples from the isotropic offset normal

distribution, with 2k − 3 = 23 parameters in each

group Θg, τg, where g = 1 (control group) org = 2

(schizophrenia group).

The isotropic offset normal MLEs can be obtained

using R for the maximization. Plots of the mean shapes

in Bookstein coordinates using baseline genu (landmark

2) and splenium (landmark 1) are given in Figure 66.

The exact isotropic MLE of shape is very close to the

full Procrustes mean shape – in particular the Procrustes

distanceρ from the exact isotropic MLE to the full

Procrustes mean shapes in both groups are both less than

ρ = 0.0002. The MLE of the variation parameters are
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τ̂1 = 0.049 andτ̂2 = 0.051.

Testing for equality in mean shape in each group we have

−2 log Λ, distributed asχ2
22 underH0, as43.269. Since the

p-value for the test isP (χ2
22 ≥ 43.269) = 0.005 we have

strong evidence that the groups are different in mean shape,

as is also seen in Example 7.4. Hence, there is evidence for

a significant difference in mean shape between the controls

and the schizophrenic patients. If we restrict the groups to

have the sameτ in H0, then−2 log Λ = 45.03 and the

p-value for the test isP (χ2
23 ≥ 45.03) = 0.004.

Of course, we may have some concern that our sample

sizes may not be large enough for the theory to hold and

alternativeF and Monte Carlo permutation tests (with

similar findings) are given in Example 7.4.2
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6.3 Practical Inference

For isotropic models in two dimensions it is practical to use

these likelihood-based or Bayesian methods but for more

general covariance structures or models in more than two

dimensions the procedure is very complicated.

Perhaps the most straightforward and preferred way to

proceed with inference is to use Procrustes analysis to

obtain an estimate of the mean shape. In order to assess

the structure of variability it is best to proceed with a

multivariate analysis approach in the real tangent space.

We continue with this theme in the next chapter, where

some classical hypothesis tests are explicitly stated in the

tangent space.


