Homework 4

Factor settings	Response
(-1,-1,-1)	118.6
(1,-1,-1,1)	118.6
(-1,1,-1,1)	159.2
(1,1,-1,-1)	166.4
(-1, -1, 1, 1)	127.6
(1, -1, 1, -1)	129.8
(-1,1,1,-1)	147.9
(1, 1, 1, 1)	170.1
$(0,\!0,\!0,\!0)$	129.7
(0,0,0,0)	136.9

123.6

 $\begin{array}{c} 139.4\\ 135.2 \end{array}$

127.9

140.2

133.2

113.2

130.2

1. A researcher wants to study 4 factors in 8 runs with 10 center points. The design appears below.

- (a) What is s_c^2 ?
- (b) What is the t critical value for a two-sided .05 test of effects?

(0,0,0,0)

(0,0,0,0)

(0,0,0,0)

(0,0,0,0)

(0,0,0,0)(0,0,0,0)

(0,0,0,0)

(0,0,0,0)

- (c) Run an analysis. Which factor effects are significant?
- (d) Is there significant curvature?
- (e) Graduate students should fit a main effects contour plot for the two largest main effects and indicate the direction of steepest ascent.
- 2. Violin data. You have already analyzed the full factorial experiment and one of the half-fractions as part of an in-class exercise. Analyze the remaining half-fraction and compare it to your earlier analyses. The easiest way to set up the design in Minitab is to select the default design for 4 factors in 8 runs. Under Options, unselect Principal Fraction, select Use Fraction and then enter 1 in the dialog box. This will select the fraction I=-ABCD. How similar are results across the three different experiments?