Statistics 506 Test 2

1. An experimenter ran the same experiment (same factors and response) using two different fractional factorial designs–4 factors in 8 runs with the generators I=ABCD and I=-ABCD. The list of computed effects appears below.

I=AB	CD	I=-ABCD		
Effect	Value	Effect	Value	
A+BCD	0.0	A-BCD	-5.7	
B+ACD	0.8	B-ACD	3.2	
C+ABD	14.0	C-ABD	15.9	
AB+CD	16.0	AB-CD	-12.2	
AC+BD	-1.0	AC-BD	-3.9	
BC+AD	-2.2	BC-AD	8	
D+ABC	3.3	D-ABC	-3.8	

- (a) Construct probability plots for both experiments. Which factors are significant?
- (b) Based on your response to the above question, which members of the significant alias pairs do you think are responsible for the observed significant effects?
- (c) Write down the levels of factors A, B, C and D for the I=ABCD fraction. Now write down the foldover runs. What do you observe? What conclusions can you make about folding over a Resolution IV design?
- 2. A fractional factorial (5 factors in 8 runs) appears below.

I.

Α	В	С	D	Е	Responses
-1	-1	-1	-1	-1	4.2
-1	-1	1	1	1	-4.1
1	-1	-1	1	1	-5.3
1	1	-1	-1	1	6.1
-1	1	-1	1	-1	2.9
-1	1	1	-1	1	-2.0
1	1	1	1	-1	-6.3
1	-1	1	-1	-1	6.0

- (a) Use Define Custom Factorial Design to help analyze the design. What is D confounded with? What is E confounded with?
- (b) Analyze the design.
- (c) Suppose you had only the Response Table available for analyzing the data. How should you enter the responses in order to compute the effects correctly?