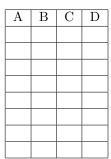

Test 2

Α	В	Response
-1	-1	46
1	-1	37
-1	1	42
1	1	33
0	0	28
0	0	27
0	0	28
0	0	30
0	0	34

1. A centerpoint design appears below. Part of the output from the Minitab session is attached.


(a) Sketch the data on the graph below. Describe the surface.

- (b) Using the output, compute T statistics for the A effect, the B effect and the AB interaction.
- (c) The t critical value for a $\alpha = .05$ test is 2.776. Which effects are significant? How many degrees of freedom would this test have?
- (d) Construct a test statistic for curvature. Is there evidence of curvature? Is this result consistent with the information in the graph in (a)?
- 2. In all the 2^{4-1} designs we have studied so far (4 factors in 8 runs), we have always aliased D with either ABC or -ABC. Suppose we choose to alias D with AC.
 - (a) What is the design generator for this design?

- (b) List the alias structure for this design. What is the resolution of this design? Discuss.
- (c) List the runs for this design in the table below

Runs Table

3. An unreplicated experiment for 3 2-level factors produced the factor effects below:

\bar{y}	Α	В	С	AB	AC	BC	ABC
0.0	5.0	0.6	5.3	-0.9	-4.1	1.3	0.2

- (a) Plot the effects on the attached normal plot. Which effects are significant?
- (b) Use the negligible effects from (a) to compute $\hat{\sigma}$.
- (c) If you wanted to detect an effect size of 1, how many replicates would you need?
- (d) If you wanted to minimize the response, what would the EMR be?

Formulas

$$T = \frac{A}{\sqrt{\frac{\hat{\sigma}^2}{n2^{k-2}}}} \qquad T = \frac{A}{s_c/\sqrt{2^{k-2}}}$$

$$n \geq \frac{\hat{\sigma}^2}{2^{k-4}A^2} \quad \hat{\sigma} = \sqrt{\frac{n^* 2^{k-2}}{m} \mathop{\scriptscriptstyle \Sigma} E_i^2}$$

$$T = \frac{\bar{y}_c - \bar{y}_F}{s_c \sqrt{\frac{1}{n_c} + \frac{1}{n_F}}}$$