Class Exercise 10

This exercise is based upon Chapter 7 of Delwiche and Slaughter’s “The Little SAS book.
We will study two different macros (strata and regall) here found on the webpage in the
two SAS source code files SafetyMacro.sas and RegMacro.sas, respectively. Take your
time and be sure you understand every step; be sure to look at intermediate data sheets in
the WORK library so that you understand the macros’ actions.

The first macro (strata) was introduced in class. When running this macro, you may need
to include .. in between &strata and csv in the first INFILE statement; on some com-
puters, this may not be necessary—you may need only one period. I've included the version
with two periods here. You should be able to tell from the LOG file if the correct data set
name (upurban.csv) was assigned by the macro; if not, adjust accordingly.

The macro computes the probability that sampling units are included in a sample of size 2,
when sampling without replacement with unequal sampling probabilities. In class, we had

shown that if unit ¢ has sampling weight 7; , then the probability it is selected would be:

P(i) = P(i selected on first draw) + P(i selected on second draw) =

Tri—l—Zﬂj i = 1+Z il

1 —m;

The strata macro includes a DATA step with a nested DO loop. It looks complicated, but
the actual macro features are really not that sophisticated—&n is used mostly to modify the
DO loop upper limit, and &strata is used to modify file names, and that’s about it!

Download and save upurban. csv—-it’s referred to as the “traffic intensity” data on the web
page. You can also go ahead and run the entire macro; several datasets will be created. Be
sure to step through the code and take a look at them:

e Data set ¢ drops the county name.

e Data set d transposes the data so that traffic intensities are more easily converted to
proportions (remember that SAS handles row operations easier than column opera-
tions).

e Data set e creates proportions from the traffic intensities.
e Data set one cleans up some variables.

e Data set two computes our sampling probabilities.

e Data set three cleans up after our calculations.

e Data set four recaptures the county names.

Notice that we’re using DO and not %D0 here; that’s because were looping within a DATA
step, and hence don’t need the added flexibility. Just because we’re writing a macro doesn’t
mean we need to use macro statements indiscriminately.

The rest of the macro is relatively routine. Data four looks a little odd and is frankly
redundant—we use firstobs and obs here because when this program was first written, the
Stat Lab used to only compute sampling probabilities for counties that had actually been
sampled, and so we wouldn’t necessarily read the entire list of county names. We don’t use
a match merge in final to add the county names back into the data set since we never
changed the order of the variables.

Add up the sampling probabilities for the three counties—what do you think is the signifi-
cance of the sum?

In our second macro (regall), we want to perform a series of simple linear regressions.
Our macro should be able to accept a single dependent variable and a list of independent
variables, and then construct regressions on each independent variable in turn. Let’s start
with a straightforward example, and then add a couple important features on our way to
our fin- ished macro.

Our data set consists of assessment tests for a group of students. Our dependent (response)
variable will be read. For our first attempt, we’ll simply use some macro variables. Go
ahead and run all the commands up through the following statements:

proc reg data=hsb2;
model read=&indvar;
run;

We actually just read in the macro regall, but I don’t want to use it just yet. The in-
clusion of &SYSDAY and &SYSDATE is a little gratuitous here. Otherwise, you see a typical
use of %LET commands to perform a multiple linear regression. The %scan function is new;
%hscan(string,i) can save element ¢ from string, where the elements are separated by
spaces (as we did here) or by delimiters. Delimiters can be specified as a third argument to
%scan.

To conduct 4 simple linear regressions on each of those 4 variables, we could construct a
macro that accepted a dependent variable, and a set of independent variables. As a first
attempt, we would likely find it easiest to also include the number of independent variables,
since it would simplify looping. Thats a bit of a cop-out though, since we really should be
able to read in the string, and then figure out the number of independent variables our-
selves. And that’s exactly what we do in the macro regall.

SAS’s approach to counting all the elements in the string isnt exactly elegant. We can
loop through the elements in the &indep string using %scan until no more elements are
found; that is what the J%do %while statement does. Note that we have to treat the string

&indep as a character by enclosing it in quotes, and look for missing character data (“7),
not missing numeric data. SAS increments the loop using the %eval statement—a form of
macro math.

Why do we use %do %while here? Because we are executing a proc reg within the DO
loop, which couldn’t be done with the usual do while statement. Highlight and run the last
statement in the program. Observe the output. You can run regall again with a different
choice of dependent variable and independent variables if you would like.

