
Class Exercise 2

We will explore some useful features of the seq and rep commands. I find that I often
have to build a table of indices, either for an experimental design, or for a categorical data
analysis problem. For example, suppose I have two factors A and B; A has 3 levels, B has
4 levels. I could enter the following commands to create a matrix of indices:

A=c(1,1,1,1,2,2,2,2,3,3,3,3)

B=c(1,2,3,4,1,2,3,4,1,2,3,4)

cbind(A,B)

Did we obtain all possible combinations of A and B? The above approach could be tedious
for large data sets. The sequence for B is easier to create, so we’ll do that first:

B=rep(1:4,3)

The above command repeats the sequence 1 through 4 three times. A requires us to repeat
each index 4 times before moving on to the next index, so we need an entire vector (4,4,4)
to indicate how often each element is repeated. As the second argument to rep, we could
use either c(4,4,4) or the second rep command shown below. The first method is actually
a little more transparent, though we use the second method below, since it is a little more
compact.

A=rep(1:3,rep(4,3))

A

B

cbind(A,B)

The following command works even better when, as in the above example, each element of
the sequence is repeated the same number of times:

A=rep(1:3,each=4)

A

Each of the 3 elements in the sequence is repeated 4 times before moving on to the next
index. Suppose the indices of A were 10, 20 and 30, and the indices of B were 5, 10, 15,
20. How would you generate a table for A and B? Use the seq (rather than c()) command
in constructing A and B.

An even simpler method to generate a set of indices is through the expand.grid func-
tion. Try the following code and compare the output to your previous output. Can you
use expand.grid to generate similar output to the table you produced in the previous
paragraph?

expand.grid(A=1:3,B=1:4)

1



Sometimes, we are in a situation where we need to set aside the space for a matrix or vector
because we plan to update it; for instance, in a user-built function with an iterative loop.
In this example, we define a as a null vector, and then add on to it:

a=c()

a=c(a,1)

a

This works too:

x=NULL

x=c(x,1)

x

The following command sets up a null matrix with known dimensions:

x=matrix(nrow=3,ncol=4)

x

x[2,3]=1

x

We have to be careful about specifying arguments; suppose we had typed:

x=matrix(3,4)

What does x look like? To set up a null matrix, we should have used:

x=matrix(NA,3,4)

This approach actually works with any constant value.

Setting up a null list requires a slightly different approach, we need to use the vector

function and specify the vector type as list. run the following commands and comment on
the list vector

PARMlist <- vector("list")

PARMlist[[1]]=1:3

PARMlist[[10]]=2:6

PARMlist

When we used read.table in class, we assumed we had tab-delimited data. I would like you
to read the same data set as before in comma-delimited format. You can find brainbod.csv

on my website; download it and be sure to change the working directory in R to the directory
where you saved the file:

brainbod.df=read.table("brainbod.csv")

brainbod.df

2



Did it work? Try this command instead, in which we specify that commas are the text
delimiters:

brainbod.df=read.table("brainbod.csv",sep=",",header=T)

brainbod.df

We can also use the following command, designed specifically for comma-delimited data:

brainbod.df=read.csv("brainbod.csv")

brainbod.df

read.table and scan have many additional features. I usually clean up the data in some-
thing more convenient, like Excel, save it in a tab-delimited file, and then read it in R,
rather than fix all the data entry problems while reading a file into R.

3


