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Random Numbers and Simulation

• Generating random numbers: Generating truly random numbers is not possible

• Programs have been developed to generate pseudo-random numbers:

– Values are generated from a complicated deterministic algorithm, which can pass

any statistical test for randomness

– They appear to be independent and identically distributed.

• Random number generators for common distributions are built into R.

• For less common distributions, more complicated methods have been developed

(e.g., Acceptance Sampling, Metropolis-Hastings Algorithm)

– STAT 740 covers these.
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(Monte Carlo) Simulation
Some Common Uses of Simulation

1. Modelling Stochastic Behavior

2. Calculating Definite Integrals

3. Approximating the Sampling Distribution of a Statistic (Ex: Max of a random sample)
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Modelling Stochastic Behavior

• Buffon’s needle

• Random walk

– Observe X1, X2, . . . , where p = P (Xi = 1) = 1 − P (Xi = −1) = 1 − p and study

S1, S2, . . ., where Si =
∑i

j=1Xj .

– This is also called Gambler’s ruin; each Xi represents a $1 bet with a return of $2 for a win and

$0 for a loss. The properties of a fair game (p = .5) are alot more interesting than the properties

of unfair games (p 6= .5).

– Some properties of this process are easy to anticipate (E(S)).

– Some properties are difficult to anticipate, and can be aided by simulation (The number of returns;

average winning or losing streak).
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Calculating Definite Integrals

In statistics, we often have to calculate difficult definite integrals (posterior distribu-

tions, expected values)

I =
∫ b

a
h(x) dx

(here, x could be multidimensional)

Example 1: Find: ∫ 1

0

4

1 + x2 dx

Example 2: Find: ∫ 1

0

∫ 1

0
(4− x2

1 − 2x2
2) dx2 dx1
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Hit-or-Miss Method

Example 1:

h(x) =
4

1 + x2(∫ 1

0

4

1 + x2 dx = 4(arctan(1)− arctan(0)) = 4 π/4 = π

)

• Determine c such that c ≥ h(x) across entire region of interest. (Here, c = 4)

• Generate n random uniform (Xi, Yi) pairs, Xi’s from U [a, b] (here, U [0, 1]) and

Yi’s from U [0, c] (here, U [0, 4])

• Count the number of times (call this m) that Yi is less than h(Xi)

• Then I ≈ c(b− a)m
n

[ This is (height)(width)(proportion in shaded region) ]
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Classical Monte Carlo Integration

I =
∫ b

a
h(x) dx

• Take n random uniform values U1, . . . , Un (could be vectors) over [a, b]

Then

I ≈ b− a
n

n∑
i=1

h(Ui)

• This method seems more straightforward than Hit-or-Miss Monte Carlo, but it is ac-

tually more efficient.
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Expected Value of a Function of a Random Variable

Suppose X is a random variable with density f .

Find E[h(X)] for some function h, e.g.,

E[X2]

E[
√
X]

E[sin(X)]

• Note E[h(X)] =
∫
X h(x)f(x) dx over the support of f .

• Take n random values X1, . . . , Xn from the distribution of X (i.e., with density f )

• Then

E[h(X)] ≈ 1

n

n∑
i=1

h(Xi)

University of South Carolina Page 7



STAT 517: Random Numbers and Simulation Hitchcock/Grego

Examples

Example 3: If X is a random variable with a N(10, 1) distribution, find E(X2).

Example 4: If Y is a beta random variable with parameters a = 5 and b = 1, find

E(− lnY ).

• There are more advanced methods of integration using simulation (Importance Sam-

pling)

• integrate() does numerical integration for functions of a single variable (not

using simulation techniques)

• adapt() in the “adapt” package does multivariate numerical integration
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Approximating the Sampling Distribution of a Statistic

To perform inference based on sample statistics, we typically need to know the sam-

pling distribution of the statistics.

Example: X1, . . . , Xn ∼ iid N(µ, σ2).

T =
X̄ − µ
s/
√
n

has a t(n− 1) distribution.

If σ2 known,

Z =
X̄ − µ
σ/
√
n

has a N(0, 1) distribution.

Then we can use these sampling distributions for inference (CIs, hypothesis tests).
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What if the data’s distribution is not normal?

1. Large sample: Central Limit Theorem

2. Small sample: Nonparametric procedures based on permutation distribution
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• If the population distribution is known, we can approximate the sampling distribution

with simulation.

• Repeatedly (m times) generate random samples of size n from the population dis-

tribution.

• Calculate a statistic (say, S) each time.

• The empirical distribution of S-values approximates its true distribution.
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Example 1: X1, . . . , X4 ∼ Expon(1)

• What is the sampling distribution of X̄?

• What is the sampling distribution of the sample midrange?

X(n) +X(1)

2
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