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6.7 CI for mean response and PI for new response

Let’s construct a CI for the mean response corresponding to a set
of values

xh =


1
xh1
xh2

...
xhk

 .
We want to make inferences about

E (Yh) = x′hβ = β0 + β1xh1 + · · ·+ βkxhk .
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Some math...

A point estimate is Ŷh = Ê (Yh) = x′hb.

Then E (Ŷh) = E (x′hb) = x′hE (b) = x′hβ.

Also var(Ŷh) = cov(x′hb) = x′hcov(b)xh = σ2x′h(X′X)−1xh.

So...

A 100(1− α)% CI for E (Yh) is

Ŷh ± tn−p(1− α/2)
√
MSE x′h(X′X)−1xh,

A 100(1− α)% prediction interval for a new response
Yh = x′hβ + εh is

Ŷh ± tn−p(1− α/2)
√
MSE [1 + x′h(X′X)−1xh],
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SENIC

SENIC (Appendix C.1) contains information on infection rates
from hospital stays at 118 hospitals. See Blackboard for variable
descriptors.
Assume we want to estimate mean infection rate for patients in
hospitals that have an average stay of 10 days, have 50% of
potential facilities and services and have a routine X-ray ratio of
100%. Now say we want a prediction interval for a new hospital
with these covariates. We can add these covariates to the data set,
and ask SAS for the CI and PI.

proc sql;

insert into senic

(stay, facilities, xray)

values 10, 50.0, 100.0)

; quit;

proc reg data=senic;

model infection=stay facilities xray / clm cli alpha=0.05;

output out=outsenic r=Residuals; *for later;
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6.8 Checking model assumptions

The general linear model assumes the following:

1 A linear relationship between E (Y ) and associated predictors
x1, . . . , xk .

2 The errors have constant variance.

3 The errors are normally distributed.

4 The errors are independent.

We estimate the unknown ε1, . . . , εn with the residuals e1, . . . , en.
Assumptions can be checked informally using plots and formally
using tests.
Note: We can’t check E (εi ) = 0 because e1 + · · ·+ en = 0, i.e.
ē = 0, by construction.
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Assumption 1: Linear mean

Scatterplots of {(xij ,Yi )}ni=1 for each predictor j = 1, . . . , k .
Look for “nonlinear” patterns. These are marginal
relationships, and do not get at the simultaneous relationship
among variables.

Look at residuals versus each predictor {(xij , ei )}ni=1, and

(or?) residuals versus fitted values {(Ŷi , ei )}ni=1.

Book suggests looking at residuals versus pairwise
interactions, e.g. ei versus xi1xi2.

Look for non-random (especially curved) pattern in the
residual plots, indicating violation of linear mean.
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Assumption 1: Linear mean

Remedies: (i) choose different functional form of model, (ii)
transformation of one or more predictor variables.

Formal “lack of fit” test is available (Section 3.7, also p.
235), but requires replicate observations at each distinct
predictor value.

Section 3.7 concentrates on constructing the test “by hand”,
but we will learn to use orthogonal polynomial contrasts to
provide an automated test in SAS or R.
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Assumption 2: Constant variance

Often the most worrisome assumption.

Violation indicated by “megaphone shape” in residual plot:
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Easy remedy: transform the response, e.g. Y ∗ = log(Y ) or
Y ∗ =

√
Y .

Advanced method: weighted least squares (Chapter 11).
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Non-constant variance

Breusch-Pagan test (pp. 118–119): tests whether the log
error variance increases or decreases linearly with the
predictor(s). Where Yi ∼ N(x′iβ, σ

2
i ), set

log σ2i = α0 + α1xi1 + · · ·αkxik and test
H0 : α1 = · · · = αk = 0, i.e. log σ2i = α0. Requires large
samples & assumes normal errors.

Brown-Forsythe test (pp. 116–117): Robust to non-normal
errors. Requires user to break data into groups and test for
constancy error variance across groups (not natural for
continuous data).

Graphical methods have advantage of checking for general
violations, not just violation of a specific type.
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Breusch Pagan test in SAS

PROC MODEL carries out a modified version of the test where
σi = σ + α1xi1 + · · ·αikxik and H0 : α1 = · · · = αk = 0. If H0 is
true then σi = σ for i = 1, . . . , n.

proc model data=senic;

parms beta0 betas betaf betax;

infection=beta0+betas*stay+betaf*facilities+betax*xray;

fit infection / breusch=(1 stay facilities xray);

With p = 0.2485 we do not reject H0 : σi = σ at α = 0.05, no
evidence of non-constant variance.
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Assumption 3: errors are normally distributed

Caution: your estimate of ε, given by e = Y−Xb, is only as good
as the model for your mean! Changing the mean can drastically
change the residuals e and any residual plots or formal tests based
on them. Diagnostics include...

Q-Q plot of e1, . . . , en.

Formal test for normality: Shapiro-Wilk (Section 3.5),
essentially based on the correlation coefficient r for expected
versus observed in normal Q-Q plot.

Remedy: transformation of Y and or any of x1, . . . , xk ,
nonparametric methods (e.g. additive models), robust
regression (least sum of absolute distances), median
regression.
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Test for normal residuals in SENIC data

proc univariate data=outsenic normal; var Residuals; run;

Tests for Normality

Test --Statistic--- -----p Value------

Shapiro-Wilk W 0.985361 Pr < W 0.2572

Kolmogorov-Smirnov D 0.051412 Pr > D >0.1500

Cramer-von Mises W-Sq 0.050361 Pr > W-Sq >0.2500

Anderson-Darling A-Sq 0.349328 Pr > A-Sq >0.2500

We do not reject H0 : e1, . . . , en are normal.

The Anderson-Darling tests looks primarily for evidence of
non-normal data in the tails of a distribution; the Shapiro-Wilk
emphasizes lack of symmetry in the distribution; i.e. less emphasis
placed on the tails.

12 / 14



Comments

With large sample sizes, the normality assumption is not
critical unless you are predicting new observations.

The formal test will not tell you the type of departure from
normality (e.g. bimodal, skew, heavy or light tails, et cetera).

Q-Q plots help answer these questions (if the mean is
specified correctly).
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Assumption 4: Independence

Chapter 12 discusses time-series methods. Handles correlated
errors over time (or space). Can also include time as a
predictor.

If willing to assume some structure on the errors, e.g. AR(1),
then can do a formal test (Chapter 12, e.g. Durbin-Watson
test pp. 484–488).

Christensen, R. and Bedrick, E. (1997). Testing the
independence assumption in linear models. JASA, 92,
1006–1016. Uses “near-replicates” instead of replicates.
(Replicates needed for standard LOF test).

In general, need to test H0 : cov(ε) = diag(σ21, . . . , σ
2
n)

(diagonal), or even stronger H0 : cov(ε) = σ2In (spherical –
constant variance).
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SAS code

SENIC Data: Create two-way interactions of Stay, Facilities, and
X-ray and look for patterns.

data outsenic; set outsenic; *Don’t add interactions to original data set;

SxF=stay*facilities;

SxX=stay*xray;

FxX=facilities*xray;

run;

*SGPLOT for Stay x Facilities interaction;

proc sgplot data=outsenic;

scatter x=SxF y=Residuals;

reg x=SxF y=Residuals/nomarkers;

loess x=SxF y=Residuals/nomarkers;

refline 0/axis=y;
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