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8.1 Polynomial regression

Used when the relationship between Y and the predictor(s) is
curvilinear or as a local regression method.

Example: we might add a quadratic term to a simple linear
model to get a parabolic mean

Yi = β0 + β1xi1 + β11x2
i1 + εi .

We can no longer interpret β1 and β11 “as usual.” We cannot
hold x1 constant and increase x2

1 by one unit, or vice-versa!

Adding higher order terms in PROC REG is a pain; new
variables need to be created in the DATA step. For PROC
GLM, you can specify a model such as model outcome=age

chol age*age age*chol; directly.
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Higher degree polynomials

The degree of a polynomial is the largest power the predictor
is raised to. The previous model is a 2nd degree polynomial
giving a quadratic-shaped mean function.

Here is a third-order (cubic) in one predictor:

Yi = β0 + β1xi1 + β11x2
i1 + β111x3

i1 + εi .

A polynomial f (x) = β0 + β1x + β2x2 + · · ·+ βkxk can have
up to k − 1 inflection points or extrema.

(p. 296) A (k-1)-order polynomial can go through
(x1,Y1), . . . , (xk ,Yk) exactly!

Or think of a (k-1)-dimensional hyperplane in k-dimensional
space “resting” on k points.
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General notes on fitting

(p. 295) Predictors can be first centered by subtracting off
the sample mean from each predictor, i.e. x∗ij = xij − x̄j is used

as a predictor instead of xij where x̄j = n−1
∑n

i=1 xij . This
reduces multicollinearity among the columns of X and
simplifies inference on β1, . . . , βk .

Polynomials of degree 4 (quartic) and higher should rarely be
used; cubic and lower is okay. High-degree polynomials have
unwieldy behavior and can provide extremely poor out of
sample prediction. Extrapolation is particularly dangerous (p.
294).

A better option is to fit an “additive model” (discussed later);
the degrees of freedom on the smoothers can mimic third or
fourth degree polynomials while being better behaved.
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Polynomial regression: more than one predictor

In the case of multiple predictors with quadratic terms,
cross-product terms should also be included, at least initially.

Example: Quadratic regression, two predictors:

Yi = β0 + β1xi1 + β2xi2︸ ︷︷ ︸
1st order

+β11x2
i1 + β22x2

i2 + β12xi1xi2︸ ︷︷ ︸
2nd order

+εi .

This is an example of a response surface, or parabolic surface
(Chapter 30!)

“Hierarchical model building,” (p. 299) stipulates that a
model containing a particular term should also contain all
terms of lower order including the cross-product terms.

Degree of cross-product term is obtained by summing power
for each predictor. e.g. the degree of β1123x2

i1xi2xi3 is
2 + 1 + 1 = 4.
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Hierarchical model building

“When using a polynomial regression model as an approximation to the true regression function, statisticians will
often fit a second-order or third-order model and then explore whether a lower-order model is adequate...With the
hierarchical approach, if a polynomial term of a given order is retained, then all related terms of lower order are also
retained in the model. Thus, one would not drop the quadratic term of a predictor variable but retain the cubic
term in the model. Since the quadratic term is of lower order, it is viewed as providing more basic information
about the shape of the response function; the cubic term is of higher order and is viewed as providing refinements
in the specification of the shape of the response function.” – Applied Statistical Linear Models by Neter, Kutner,
Nachtsheim, and Wasserman.

“It is not usually sensible to consider a model with interaction but not the main effects that make up the
interaction.” – Categorical Data Analysis by Agresti.

“Consider the relationship between the terms β1x and β2x
2. To fit the term β0 + β2x

2 without including β1x
implies that the maximum (or minimum) of the response occurs at x = 0...ordinarily there is no reason to suppose

that the turning point of the response is at a specified point in the x-scale, so that the fitting of β2x
2 without the

linear term is usually unhelpful.
A further example, involving more than one covariate, concerns the relation between a cross-term such as β12x1x2
and the corresponding linear terms β1x1 and β2x2. To include the former in a model formula without the latter
two is equivalent to assuming the point (0, 0) is a col or saddle-point of the response surface. Again, there is
usually no reason to postulate such a property for the origin, so that the linear terms must be included with the
cross-term.” – Generalized Linear Models by McCullagh and Nelder.
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Polynomial model as an approximation to unknown surface

Real surface given by

yi = f (xi1, xi2) + εi .

First order approximation to f (x1, x2) about some (x̄1, x̄2) is

f (x1, x2) = f (x̄1, x̄2) +
∂f (x̄1, x̄2)

∂x1
(x1 − x̄1) +

∂f (x̄1, x̄2)

∂x2
(x2 − x̄2)

+HOT.

=

[
f (x̄1, x̄2)− x̄1

∂f (x̄1, x̄2)

∂x1
− x̄2

∂f (x̄1, x̄2)

∂x2

]
+

[
∂f (x̄1, x̄2)

∂x1

]
x1 +

[
∂f (x̄1, x̄2)

∂x2

]
x2 + HOT

= β0 + β1x1 + β2x2 + HOT

E (Y ) = β0 + β1x1 + β2x2 is an approximation to unknown,
infinite-dimensional f (x1, x2) characterized by (β0, β1, β2).
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2nd order Taylor’s approximation

Now let x = (x1, x2) and

f (x) = f (x̄) + Df (x̄)(x− x̄) +
1

2
(x− x̄)′D2f (x̄)(x− x̄)′ + HOT.

This similarly reduces to

f (x1, x2) = β0 + β1x1 + β2x2 + β3x2
1 + β4x2

2 + β5x1x2 + HOT,

where (β0, β1, β2, β3, β4, β5) correspond to various (unknown)
partial derivatives of f (x1, x2). Depending on the shape of the true
(unknown) f (x1, x2), some or many of the terms in the
approximation E (Y ) = β0 + β1x1 + β2x2 + β3x2

1 + β4x2
2 + β5x1x2

may be unnecessary.

We work backwards via F tests hierarchically getting rid of HOT
first to get at more general trends/shapes, e.g. the first order
approximation.
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When to include polynomial terms

If the response vs. a predictor is curved in the initial
scatterplot, this relationship may or may not hold when other
predictors are added! It’s better to examine residuals versus
each predictor to see if, e.g. adding a quadratic term, might
be useful.

Added variable plots are a refined plot to help figure out if the
“non-linear” pattern is there when other variables are added
(Section 10.1)

With lots of predictors, say k ≥ 5, it is easier to pare down to
important main effects first, look for possible pairwise
interactions (if necessary), and then see if any of the residual
plots look curved; if so, toss in a quadratic term.
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When to include polynomial terms

Sometimes people fit a higher-order model and then start
“paring away” higher order terms with t and F-tests to get a
simpler, more interpretable model. This is called backwards
elimination (Chapter 9).

The example on pp. 300–305 starts with a full quadratic
function, then pares away higher order terms, finally leaving
only the main effects as important.

Don Edwards is a big proponent of working backwards from a
more complex model, particularly when you are most
interested in prediction.
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8.2 Pairwise interactions among predictors

Recall that Taylor’s theorem includes cross product terms.

An interaction model includes one or several cross-product terms.

Example: Two predictors

Y = β0 + β1x1 + β2x2 + β12x1x2 + ε.

How does the mean change when we increase x1 by unity?

at x1 ⇒ E (Y ) = β1x1 + β2x2 + β12x1x2

at x1 + 1 ⇒ E (Y ) = β1(x1 + 1) + β2x2 + β12(x1 + 1)x2

difference = β1 + β12x2

How the mean changes depends on the other variable.
An additive model is like a sheet of paper held “flat.” A pairwise
interaction is like twisting the two ends of the paper. Plots can
show what’s happening (pp. 310–311)
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Interactions
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Interactions

Parallel lines indicate no interaction between x1 and x2;
non-parallel lines indicate an interaction.

Including all pairwise (or higher) interactions complicates
things tremendously.

Need to pare them out via t-tests and/or F-tests.

Book suggests fitting additive model, then looking at residuals
ei versus each two-way interaction; if there’s a pattern you
could include that interaction in the model.

In my personal experience, scientists will often have “an idea”
of which variables might interact, i.e. there’s already some
intuition there on their part. This can be helpful.

Can also find pool of “good” main effects, then add
interactions one at a time (forward selection!) using proc

glm.
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8.3 Categorical predictors

Let’s say we wish to include variable “cat,” a categorical variable
that takes on values cat ∈ {1, 2, . . . , I}. We need to allow each
level of cat = x to affect E (Y ) differently. This is accomplished by
the use of dummy variables.

In PROC GLM, categorical variables are defined through the CLASS

CAT; statement and all dummy variables are created and handled
internally. PROC REG doesn’t do this.

Type 3 tests are used to see whether an entire categorical predictor
can be dropped from the model (all of the dummy variables at
once).
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Creating zero-one dummies

Define z1, z2, . . . , zI−1 as follows:

zj =

{
1 cat = j
0 X 6= j

}
This sets class cat = I as baseline (baseline is last alpha-numeric
level). Say I = 3, then the model is

E (Y ) = β0 + β1z1 + β2z2.

which gives

E (Y ) = β0 + β1 when cat = 1

E (Y ) = β0 + β2 when cat = 2

E (Y ) = β0 when cat = 3

β1 and β2 are offsets to the baseline mean.
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Collapsing levels

Sometimes a researcher is interested in whether levels can be
pooled for a categorical predictor.

The table of regression coefficients only provides offsets to the
baseline, and so only allows us to test whether the baseline
can be collapsed with the (I − 1) other levels.

Adding a contrast statement to PROC GLM will allow us to
test whether we can collapse levels. For example, for I = 3 we
can add contrast ‘collapse 2 and 3’ CAT 0 1 -1;

If we instead create dummy variables (d1 and d2) by hand in
the data step, in PROC REG we can use test d1-d2=0;
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Interaction between two categorical variables

A two-way interaction is defined by multiplying the variables
together; if one or both variables are categorical then all possible
pairings of dummy variables are considered.

Example: Say we have two categorical predictors, X = 1, 2, 3 and
Z = 1, 2, 3, 4. An additive model is

E(Y ) = β0 + β1I{X = 1}+ β2I{X = 2}
+β3I{Z = 1}+ β4I{Z = 2}+ β5I{Z = 3}.

The model that includes an interaction between X and Z adds
(3− 1)(4− 1) = 6 additional dummy variables accounting for all
possible ways, i.e. all levels of Z , the mean can change from X = i
to X = j . The new model is rather cumbersome:

E(Y ) = β0 + β1I{X = 1}+ β2I{X = 2}
+β3I{Z = 1}+ β4I{Z = 2}+ β5I{Z = 3}
+β6I{X = 1}I{Z = 1}+ β7I{X = 1}I{Z = 2}
+β8I{X = 1}I{Z = 3}+ β9I{X = 2}I{Z = 1}
+β10I{X = 2}I{Z = 2}+ β11I{X = 2}I{Z = 3}.
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8.5 Categorical & quantitative interaction

We will study an augmented version of our Fall 2008 cohort data.

Our dependent variable is GPA.

Continuous independent variables include Verbal SAT and
Math SAT.

Categorical independent variables include Class, Gender,
Housing (Onsite/Offsite) and others.

proc sgscatter data=fall08;

matrix cltotgpa satv satm;

run;

*Slopes appear equal. Gender main effect;

proc sgplot data=fall08;

scatter x=satv y=cltotgpa/group=gender;

reg x=satv y=cltotgpa/group=gender;

xaxis label="Verbat SAT";

yaxis label=GGPA";

run;
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8.5 Categorial & quantitative predictor

Analysis will focus on Verbal SAT, Class and Gender.

Consider the following model

Y = β0 + β1x1 + β2x2 + β12x1x2 + ε

where x1 is Verbal SAT and x2 = 1 for female students and xi2 = 0
for male students (one continuous and one categorical with two
levels).
Then

E (Y ) = (β0 + β2) + (β1 + β12)x1 for female students

E (Y ) = β0 + β1x1 for male students
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8.5 Categorial & quantitative predictor

The two equations have different intercepts and different slopes. If
we instead fit an additive model

Y = β0 + β1x1 + β2x2 + ε

then
E (Y ) = (β0 + β2) + β1x1 for female students,

E (Y ) = β0 + β1x1 for male students.

These are two parallel lines; the slope is the same. β2 is how much
higher (or lower) GPA would befor female students for any Verbal
SAT score x1.
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Fall 2008 cohort

We will

Look at standard ODS diagnostic plots from PROC GLM

Test whether an interaction term is needed

Look at a four-level categorical predictor (Class)

Test whether levels of Class can be collapsed
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Two more examples from this chapter...

data power; * pp. 300-305 QUESTION: is the first order model okay?

input cycles rate temp @@;

datalines;

150 0.6 10 86 1.0 10 49 1.4 10 288 0.6 20 157 1.0 20

131 1.0 20 184 1.0 20 109 1.4 20 279 0.6 30 235 1.0 30

224 1.4 30

;

data soap; * pp. 330-333 QUESTION: are the lines the same?;

input scrap speed line @@;

datalines;

218 100 1 248 125 1 360 220 1 351 205 1 470 300 1 394 255 1

332 225 1 321 175 1 410 270 1 260 170 1 241 155 1 331 190 1

275 140 1 425 290 1 367 265 1 140 105 0 277 215 0 384 270 0

341 255 0 215 175 0 180 135 0 260 200 0 361 275 0 252 155 0

422 320 0 273 190 0 410 295 0

;
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