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Chapter 11
11.1 Unequal variance rem. measure: Weighted least squares
11.2 Multicollinearity rem. measure: Ridge regression

11.1: Weighted least squares

Chapters 3 and 6 discuss transformations of x1, . . . , xk and/or
Y .

This is “quick and dirty” but may not solve the problem.

Or can create an uninterpretable mess (book:
“inappropriate”).

More advanced remedy: weighted least squares regression.

Model is as before

Yi = β0 + β1xi1 + · · ·βkxik + εi ,

but now
εi

ind .∼ N(0, σ2i ).

Note the subscript on σi ...
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Here var(Yi ) = σ2i . Give observations with higher variance less
weight in the regression fitting.

Say σ1, . . . , σn are known. Let wi = 1/σ2i and define the
weight matrix

W =


w1 0 · · · 0
0 w2 · · · 0
...

...
. . .

...
0 0 · · · wn

 =


σ−21 0 · · · 0

0 σ−22 · · · 0
...

...
. . .

...
0 0 · · · σ−2n

 .
Maximizing the likelihood (pp. 422-423) gives the estimates
for β:

bw = (XWX′)−1X′WY.
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However, σ1, . . . , σn are almost always unknown.

If the mean function is appropriate, then E (e2i ) = σ2i (1− hii )
where ei is obtained from ordinary least squares, so e2i
estimates σ2i and |ei | estimates σi (pp. 424-425) as hii → 0 as
n→∞.

Look at plots of |ei | from a normal fit against predictors in the
model and the fitted values Ŷi to see how σi changes with
predictors or fitted values.

For example, if |ei | increases linearly with Ŷi = x′ib, then we’ll
fit |ei | = α0 + α1xi1 + · · ·+ αkxik + δi and obtain the fitted

values |̂ei |.
If e2i increases linearly with only xi4, then we’ll fit

e2i = α0 + α4xi4 + δi and obtain the fitted values ê2i .
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1 Regress Y against predictor variable(s) as usual (OLS) &
obtain e1, . . . , en & Ŷ1, . . . , Ŷn.

2 Regress |ei | against predictors x1, . . . , xk or fitted values Ŷi .

3 Let ŝi be the fitted values for the regression in 2.

4 Define wi = 1/ŝ2i for i = 1, . . . , n.

5 Use bw = (X′WX)−1X′WY as estimated coefficients –
automatic in SAS. SAS will also use the correct
cov(bw ) = (X′WX)−1 (p. 423). This is developed formally in
linear models.
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SAS code: initial fit

* SAS example for Weighted Least Squares ;

* Blood pressure data in Table 11.1 ;

data bloodp; input age dbp @@; datalines;

27 73 21 66 22 63 24 75 25 71 23 70 20 65

20 70 29 79 24 72 25 68 28 67 26 79 38 91

32 76 33 69 31 66 34 73 37 78 38 87 33 76

35 79 30 73 31 80 37 68 39 75 46 89 49 101

40 70 42 72 43 80 46 83 43 75 44 71 46 80

47 96 45 92 49 80 48 70 40 90 42 85 55 76

54 71 57 99 52 86 53 79 56 92 52 85 50 71

59 90 50 91 52 100 58 80 57 109

; run;

* Regress the response, dbp, against the predictor, age ;

* The plots show definite nonconstant error variance ;

proc reg data=bloodp;

model dbp=age;

output out=temp r=residual;

run;

6 / 19



Chapter 11
11.1 Unequal variance rem. measure: Weighted least squares
11.2 Multicollinearity rem. measure: Ridge regression

SAS code: determining wi

* Plot of absolute residuals against age shows that

absolute residuals increase approximately linearly;

data temp; set temp; absr = abs(residual); run;

proc sgplot data=temp;

scatter x=age y=absr/markerattrs=(color=blue symbol=Diamond);

loess x=age y=absr/nomarkers lineattrs=(color=blue);

xaxis label="Age";

yaxis label="Absolute Residuals";
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SAS code: WLS fit

* Regress absolute residuals against the age ;

* This second regression is done on the data set temp ;

proc reg data=temp;

model absr=age;

output out=temp1 p=s_hat ;

run;

* Define weights using the fitted values from this second regression ;

data temp1; set temp1; w=1/(s_hat**2); run;

* Using the WEIGHT option in PROC REG to get the WLS estimates ;

* This last regression is done on the data set temp1 ;

proc reg data=temp1;

weight w;

model dbp=age / clb;

output out=temp2 r=residual;

run;
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se(b1) reduced from 0.097 (OLS) to 0.079 (WLS). WLS
verified via bootstrap on pp. 462–463 (just FYI).

R2 no longer interpreted the same way in terms of amount of
total variability explained by model.

In WLS, standard inferences about coefficients may not be
valid for small sample sizes when weights are estimated from
the data.

If MSE of the WLS regression is near 1, then our estimation of
the “error standard deviation” function is okay. Here it’s 1.21.
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Fitting the model directly...

A drawback of this approach is that the weights wi = 1/ŝ2i
have associated variability that is not reflected in cov(bw ).
It is possible to fit the implied model

Yi = β0 + β1ai + εi , εi ∼ N(0, τ0 + τ1ai ),

directly in SAS. One option is to have SAS maximize the
associated likelihood in PROC NLMIXED.
Note that a similar, and possibly more appropriate, model

Yi = β0 + β1ai + εi , εi ∼ N(0, eτ0+τ1ai ),

was used for the Breusch-Pagan test H0 : τ1 = 0 described in
Sections 3.6 and 6.8. This model can also be fit easily in
PROC NLMIXED.
However, things like F -tests go out the window and
everything relies on asymptotics (which for large enough
samples work fine).
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SAS code: fitting model directly

* Model fit directly using PROC NLMIXED ;

* Starting values obtained from regressions 1 and 2 ;

proc nlmixed data=bloodp;

parms beta0=50 beta1=0.5 tau0=-1 tau1=0.2;

mu=beta0+beta1*age; sigma=tau0+tau1*age;

model dbp ~ normal(mu,sigma*sigma);

run;
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11.2: Ridge regression

Before considering ridge regression, recall that even serious
multicollinearity does not present a problem when the focus is
on prediction, and prediction is limited to the overall pattern
of predictors in the data. Use x′h(X′X)−1xh for predictor xh
and compare to the rest of the leverages.

Principle components provide composite “predictors” that are
uncorrelated. Under umbrella term of “dimension reduction.”

Ridge regression is an advanced remedial measure for
multicollinearity that uses a biased estimate bR instead of the
OLS b.

Although biased, it may have less variance – one of the effects
of multicollinearity was exploding se(bk). See Fig. 11.2 (p.
432).
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Ridge regression adds a biasing constant c to the normal
equations based on the standardized regression model
developed in Section 7.5 (also used for VIFs in 10.5); read pp.
273–275 and p. 433.

c = 0⇒ OLS estimator b.

Bias in the estimator bR increases/decreases with c .

VIFs/R2 decrease with increasing c .

Look at plots of bRj and VIFj versus c to see when estimates
and variance inflation stabilize. Can get these automatically in
SAS.

Note no standard errors when choosing c by eye. Need to use
bootstrap; not automatic in SAS.

Ridge regression is related to the LASSO; more in a minute...
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Standard error for fixed c

Page 433. Working with standardized model

Y ∗i = β∗1x
∗
i1 + · · ·β∗kx∗ik + ε∗i .

bR = ((X∗)′X∗ + cI)−1(X∗)′Y∗.

So

cov(bR) = ((X∗)′X∗ + cI)−1k (X∗)′(X∗)((X∗)′X∗ + cI)−1(σ∗)2.

Why not output from SAS?
Note: Ridge regression gives the same estimate as the Bayesian
posterior mode of β∗ under independent mean-zero normal priors
with variance τ2 on the β∗1 , . . . , β

∗
k . Here, c = (σ∗)2/τ2.
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SAS code & output: body fat data

*******************************

* Body fat data from Chapter 7

*******************************;

data body;

input triceps thigh midarm bodyfat @@;

cards;

19.5 43.1 29.1 11.9 24.7 49.8 28.2 22.8

30.7 51.9 37.0 18.7 29.8 54.3 31.1 20.1

19.1 42.2 30.9 12.9 25.6 53.9 23.7 21.7

31.4 58.5 27.6 27.1 27.9 52.1 30.6 25.4

22.1 49.9 23.2 21.3 25.5 53.5 24.8 19.3

31.1 56.6 30.0 25.4 30.4 56.7 28.3 27.2

18.7 46.5 23.0 11.7 19.7 44.2 28.6 17.8

14.6 42.7 21.3 12.8 29.5 54.4 30.1 23.9

27.7 55.3 25.7 22.6 30.2 58.6 24.6 25.4

22.7 48.2 27.1 14.8 25.2 51.0 27.5 21.1

;

run;

proc reg data=body outest=ridge outvif ridge=0.01 to 0.5 by .01;

model bodyfat=triceps thigh midarm;

plot / ridgeplot; run;

* I would probably take c=0.1 or c=0.2 based on the plot;

proc print; run;

proc reg data=body outest=ridge ridge=0.2;

model bodyfat=triceps thigh midarm; run;

proc print data=ridge; run;
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Ridge regression in R

lm.ridge provides a function for performing ridge regression in R.
You can use generalized cross-validation (Golub, Heath, and
Wahba, 1979 Technometrics) to choose the best c . This is
preferable to PRESS. A newer package ridge uses a different
method for choosing c and provides p-values for the best ridge
model.

library(MASS)

bodyfat=read.table("http://www.stat.sc.edu/~hansont/stat704/bodyfat.txt",

header=T)

f=lm.ridge(bodyfat~triceps+thigh+midarm,data=bodyfat,lambda=seq(0,2,by=0.005))

plot(f)

select(f) # gives c=0.02

f=lm.ridge(bodyfat~triceps+thigh+midarm,data=bodyfat,lambda=0.02)

coef(f) # no standard errors...BOOOO!!!

library(ridge) # uses c selection based on PCA

f=linearRidge(bodyfat~triceps+thigh+midarm,data=bodyfat)

summary(f) # p-values!!! hooray!!!
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Penalized least-squares (p. 436) formulation of ridge regression:

Qpen =
n∑

i=1

(Y ∗i − (x∗i )′bR)2 + c
k∑

j=1

(bRj )2.

The solution is bR that minimizes Qpen.
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LASSO chooses bL to minimize

n∑
i=1

(Y ∗i − (x∗i )′bL)2 + c
k∑

j=1

|bLj |

In LASSO, this constraint leads to some bLj ’s set exactly to zero,
so LASSO can be viewed as a method of variable selection as well
as coefficient estimation.

Traditionally ridge regression estimates have been easier to obtain
(computationally) than LASSO estimates. However, recent
advances allow for the routine use of LASSO. LASSO for variable
selection is in the new SAS PROC GLMSELECT.
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LASSO on the bodyfat data

proc glmselect data=body plot=coefficients;

* can also have class statement;

* default for LASSO picks model w/ smallest BIC (i.e. SBC);

* plot is each coefficient as c is increased;

model bodyfat=triceps thigh midarm / selection=lasso;

run;

PROC GLMSELECT stops with the model that has the lowest
BIC.

Compare the LASSO coordinate evolution plot to that obtained via
ridge regression. Question: are the coefficients for the standardized
model, or unstandardized? Looks like the latter.

In R packages the biasing constant (and therefore bL) can be
estimated via cross-validation, but not in SAS.
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