Chapter 11: Robust & Quantile regression

Adapted from Timothy Hanson

Department of Statistics, University of South Carolina

Stat 704: Data Analysis I

11.3: Robust regression

- Leverages h_{ii} and deleted residuals t_i are useful for finding outlying \mathbf{x}_i and Y_i (w.r.t. the model) cases.
- Cook's D_i and DFFIT_i indicate which cases influence the fit of the model, i.e. the OLS b.
- What to do with influential and/or outlying cases? Are they transcription errors or somehow unrepresentative of the target population?
- Outliers are often interesting in their own right and can help guide the building of a better model.
- Robust regression dampens the effect of outlying cases on estimation to provide a better fit to the majority of cases.
- Useful in situations when there's no time for "influence diagnostics" or a more careful analysis.

- Robust regression is effective when the error distribution is not normal, but heavy-tailed.
- M-estimation is a general class of estimation methods. Choose $oldsymbol{eta}$ to minimize

$$Q(\beta) = \sum_{i=1}^{n} \rho(Y_i - \mathbf{x}_i'\beta),$$

where $\rho(\cdot)$ is some function.

- $\rho(u) = u^2$ gives OLS **b**.
- $\rho(u) = |u|$ gives L_1 regression, or least absolute residual (LAR) regression.
- Huber's method described next builds a $\rho(\cdot)$ that is a compromise between OLS and LAR. It looks like u^2 for u close to zero and |u| further away.

Iteratively Reweighted Least Squares

Outlying values of $r_i^j = y_i - \mathbf{x}_i' \mathbf{b}^j$ are (iteratively) given less weight in the estimation process.

- 0 (Starting \mathbf{b}^0) OLS: $w_i^0 = 1/e_i^2$ from $\mathbf{e} = \mathbf{Y} \mathbf{X}\mathbf{b}$. Set j = 1.
- 1 (WLS for \mathbf{b}^j using \mathbf{W}^{j-1}): $\mathbf{b}^j = (\mathbf{X}'\mathbf{W}^{j-1}\mathbf{X})^{-1}\mathbf{X}'\mathbf{W}^{j-1}\mathbf{Y}$.
- 2 $\hat{\sigma}^j = \text{median}\{|Y_i \mathbf{x}_i'\mathbf{b}^j|/\Phi^{-1}(0.75) : i = 1, \dots, n\}.$
- $w_i^j = W\left(\frac{Y_i \mathbf{x}_i^t \mathbf{b}^j}{\hat{\sigma}^j}\right)$, where

$$W(u) = \left\{ \begin{array}{ll} 1 & \text{if } |u| \le 1.345 \\ \frac{1.345}{|u|} & \text{if } |u| > 1 \end{array} \right\}.$$

Set j to j + 1.

• Repeat steps 1 through 3 until $\hat{\sigma}^j$ and \mathbf{b}^j stabilize.

There are other weight functions (SAS default is bisquare, pp. 439-440) and other methods for updating $\hat{\sigma}^j$ – see book and SAS documentation if interested.

SAS code: M-estimation w/ Huber weight

```
data prof:
input state$ mathprof parents homelib reading twwatch absences;
datalines:
Alabama
                       252 75 78 34 18 18
 Arizona
                        259 75 73 41 12 26
                  ...et cetera...
Wisconsin
                        274 81 86 38 8 21
Wvoming
                        272 85 86 43 7 23
proc robustreg data=prof method=m (wf=huber):
model mathprof=parents homelib reading tvwatch absences; run;
proc robustreg data=prof method=m (wf=huber);
model mathprof=parents homelib reading tywatch absences:
test absences reading; run;
proc robustreg data=prof method=m (wf=huber):
model mathprof=parents homelib tvwatch ;
 id state; output out=out p=p sr=sr; run;
```

SAS output...

The ROBUSTREG Procedure

Parameter Estimates

			Standard	95% Co	nfidence	Chi-		
Parameter	DF	Estimate	Error	Li	nits	Square	${\tt Pr}$	> ChiSq
Intercept	1	178.1630	28.2897	122.7162	233.6097	39.66		<.0001
parents	1	0.3574	0.2007	-0.0360	0.7507	3.17		0.0750
homelib	1	0.7702	0.1403	0.4952	1.0452	30.14		<.0001
reading	1	0.1495	0.2100	-0.2620	0.5611	0.51		0.4763
tvwatch	1	-0.8218	0.2752	-1.3612	-0.2824	8.92		0.0028
absences	1	-0.0121	0.2058	-0.4155	0.3912	0.00		0.9530

Robust Linear Tests

Test

	Test		Chi-	
Test	Statistic	Lambda DF	Square P	r > ChiSo
Rho	0.2201	0.8646 2	0.25	0.880
Rn2	0.5073	2	0.51	0.7760

Quantile Regression

Quantile regression

- Another option is general quantile regression.
- L₁ regression (p. 438), described above, is median regression and can be carried out in SAS PROC QUANTREG. Other quantiles can similarly be regressed upon.
- Robust quantile regression is particularly helpful for modeling responses with non-constant error variance.
- QUANTREG solves minimization problem using simplex algorithm, details in documentation.

Median, or L_1 regression minimizes

$$Q_{0.5}(\beta) = \min_{\beta \in \mathbb{R}^p} \sum_{i=1}^n |Y_i - \mathbf{x}_i'\beta|.$$

Let $0<\tau<1$ be a probability. Koenker and Bassett (1978) define ${\bf b}_{\tau}$, the τ th quantile regression effects vector, to minimize

$$Q_{\tau}(\boldsymbol{\beta}) = \min_{\boldsymbol{\beta} \in \mathbf{R}^p} \left[\tau \sum_{i: y_i \geq \mathbf{x}_i' \boldsymbol{\beta}} |Y_i - \mathbf{x}_i' \boldsymbol{\beta}| + (1 - \tau) \sum_{i: y_i < \mathbf{x}_i' \boldsymbol{\beta}} |Y_i - \mathbf{x}_i' \boldsymbol{\beta}| \right].$$

Let Y_h be a draw from the population with accompanying \mathbf{x}_h . The \mathbf{b}_{τ} that minimizes $Q_{\tau}(\boldsymbol{\beta})$ satisfies

$$P(Y_h \leq \mathbf{x}_h' \mathbf{b}_{\tau}) \approx \tau.$$

Note $q_{\tau}(\mathbf{x}) = \mathbf{x}'\mathbf{b}_{\tau}$. How are the elements of \mathbf{b}_{τ} interpreted?

SAS code: Fall 2008 GPA data

```
proc quantreg data=fall08;
model cltotgpa=satv / quantile=0.25;
output out=o1 p=p1;

proc quantreg data=fall08;
model cltotgpa=satv / quantile=0.50;
output out=o2 p=p2;

proc quantreg data=fall08;
model cltotgpa=satv / quantile=0.75;
output out=o3 p=p3;
data o4; set o1 o2 o3; proc sort data=o4; by quantile satv;
```

SAS output

Why is the slope for regression on $q_{.75}$ not increase?

The QUANTREG Procedure

Quantile		0.25
Parameter Intercept satv	1	95% Confidence Limits 0.9885 1.6033 0.0020 0.0032
Quantile		0.5
Parameter Intercept satv	1	 95% Confidence Limits 1.2774 1.8131 0.0024 0.0034
Quantile		0.75
Parameter Intercept satv		 95% Confidence Limits 1.8469 2.3454 0.0022 0.0030

Normal-errors regression is also quantile regression

For our standard model:

$$Y = \mathbf{x}'\boldsymbol{\beta} + \epsilon, \ \epsilon \sim N(0, \sigma^2),$$

note that

$$P(Y \le q_{\tau}) = \tau \Leftrightarrow$$

$$P(\mathbf{x}'\beta + \epsilon \le q_{\tau}) = \tau \Leftrightarrow$$

$$P\left(\frac{\epsilon}{\sigma} \le \frac{q_{\tau} - \mathbf{x}'\beta}{\sigma}\right) = \tau \Leftrightarrow$$

$$\Phi\left(\frac{q_{\tau} - \mathbf{x}'\beta}{\sigma}\right) = \tau \Leftrightarrow$$

$$\frac{q_{\tau} - \mathbf{x}'\beta}{\sigma} = \Phi^{-1}(\tau) \Leftrightarrow$$

$$q_{\tau}(\mathbf{x}) = \Phi^{-1}(\tau)\sigma + \mathbf{x}'\beta.$$

- When x_i increases by one, every quantile increases by β_i .
- What does this imply about the quantile functions?
- Could we see a plot like we saw for the GPA data a few slides ago?
- Final comment: L_1 regression is obtained as the MLE from a standard regression model assuming the errors are distributed double-exponential (Laplace).