Chapter 1

Adapted from Timothy Hanson

Department of Statistics, University of South Carolina

Stat 704: Data Analysis I

Model: a mathematical approximation of the relationship among real quantities (equation & assumptions about terms).

- We have seen several models for an outcome variable from either one or two populations.
- Now we'll consider models that relate an outcome to one or more continuous predictors.
- Functional relationships are perfect. Realizations (X_i, Y_i) solve the relation Y = f(X).
- A statistical relationship is not perfect. There is a trend plus error. Signal plus noise.

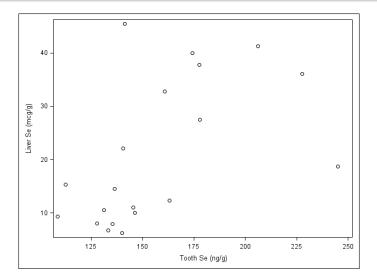
Section 1.1: relationships between variables

- A functional relationship between two variables is deterministic, e.g. Y = cos(2.1X) + 4.7. Although often an approXimation to reality (e.g. the solution to a differential equation under simplifying assumptions), the relation itself is "perfect." (e.g. page 3)
- A statistical or stochastic relationship introduces some "error" in seeing *Y*, typically a functional relationship plus noise. (e.g. Figures 1.1, 1.2, and 1.3; pp. 4–5).

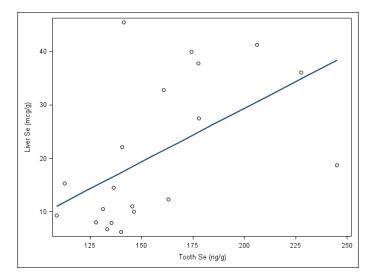
Statistical relationship: not a perfect line or curve, but a general tendency plus slop.

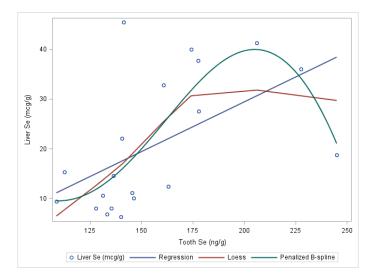
- Selenium protects marine animals against mercury poisoning.
- n = 20 Beluga whales were sampled during a traditional Eskimo hunt; tooth Selenium (Se) and liver Se were measured.
- Would be useful to be able to use tooth Selenium as a proxy for liver Selenium (easier to get).
- Same idea with "biomarkers" in biostatistics.

```
data whale;
input liver tooth @@;
label liver="Liver Se (mcg/g)"; label tooth="Tooth Se (ng/g)";
datalines;
6.23 140.16 6.79 133.32 7.92 135.34 8.02 127.82 9.34 108.67
10.00 146.22 10.57 131.18 11.04 145.51 12.36 163.24 14.53 136.55
15.28 112.63 18.68 245.07 22.08 140.48 27.55 177.93 32.83 160.73
36.04 227.60 37.74 177.69 40.00 174.23 41.23 206.30 45.47 141.31
;
proc sgscatter; plot liver*tooth / reg; * or pbspline or nothing;
```

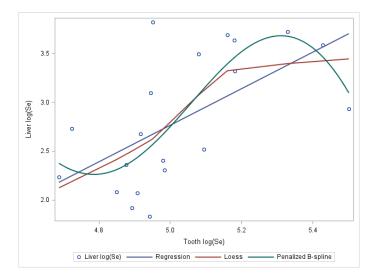


Must decide what is the proper *functional form* for the trend in this relationship, e.g. linear, curved, piecewise continuous, cosine?





How about a curve?



Taking log of both variables.

For a sample of *n* pairs $\{(X_i, Y_i)\}_{i=1}^n$, let

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i, \ i = 1, \dots, n,$$

where

- Y_1, \ldots, Y_n are realizations of the response variable,
- X_1, \ldots, X_n are the associated predictor variables,
- β_0 is the intercept of the regression line,
- β_1 is the slope of the regression line, and
- $\epsilon_1, \ldots, \epsilon_n$ are unobserved, uncorrelated random errors.

This model assumes that X and Y are *linearly* related, i.e. the mean of Y changes linearly with X.

We assume that $E(\epsilon_i) = 0$, $var(\epsilon_i) = \sigma^2$, and $corr(\epsilon_i, \epsilon_j) = 0$ for $i \neq j$: mean zero, constant variance, uncorrelated.

- $\beta_0 + \beta_1 X_i$ is the *deterministic* part of the model. It is fixed but unknown.
- ϵ_i represents the random part of the model.

The goal of statistics is often to estimate signal in the presence of noise; which is which here?

Note that

$$E(Y_i) = E(\beta_0 + \beta_1 X_i + \epsilon_i) = \beta_0 + \beta_1 X_i + E(\epsilon_i) = \beta_0 + \beta_1 X_i,$$

and similarly

$$\operatorname{var}(Y_i) = \operatorname{var}(\beta_0 + \beta_1 X_i + \epsilon_i) = \operatorname{var}(\epsilon_i) = \sigma^2.$$

Also, corr $(Y_i, Y_j) = 0$ for $i \neq j$.

These use results from A.3.

• A consultant studies the relationship between the number of bids requested by construction contractors for lighting equipment over a week X_i (*i* denotes which week) and the time required to prepare the bids Y_i. Suppose *we know*

$$Y_i = 9.5 + 2.1X_i + \epsilon_i.$$

• If we see $(X_3, Y_3) = (45, 108)$ then $\epsilon_3 = 108 - [9.5 + 2.1(45)] = 4$. See Fig. 1.6.

- The mean time given X is E(Y) = 9.5 + 2.1X. When X = 45, our eXpected y-value is 104, but we will actually observe a value somewhere around 104.
- What does 9.5 represent here? Is it sensible/interpretable?
- How is 2.1 interpreted here?
- In general, β₁ represents how the mean response changes when X is increased one unit.

Note the simple linear regression model can be written in matrix terms as

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} 1 & X_1 \\ 1 & X_2 \\ \vdots & \vdots \\ 1 & X_n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix},$$

or equivalently

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon},$$

where

$$\mathbf{Y} = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}, \mathbf{X} = \begin{bmatrix} 1 & X_1 \\ 1 & X_2 \\ \vdots & \vdots \\ 1 & X_n \end{bmatrix}, \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}, \boldsymbol{\epsilon} = \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}.$$

This will be useful later on.

Section 1.6: Estimation of (β_0, β_1)

- β₀ and β₁ are unknown parameters to be estimated from the data: (X₁, Y₁), (X₂, Y₂), ..., (X_n, Y_n).
- They completely determine the unknown mean at each value of *X*:

$$E(Y) = \beta_0 + \beta_1 X.$$

- Since we expect the various Y_i to be both above and below $\beta_0 + \beta_1 X_i$ roughly the same amount $(E(\epsilon_i) = 0)$, a good-fitting line $b_0 + b_1 X$ will go through the "heart" of the data points in a scatterplot.
- The method of least-squares formalizes this idea by minimizing the sum of the squared deviations of the observed y_i from the line b₀ + b₁X_i.

Least squares method for estimating (β_0, β_1)

The sum of squared deviations about the line is

$$Q(\beta_0, \beta_1) = \sum_{i=1}^n [Y_i - (\beta_0 + \beta_1 X_i)]^2.$$

Least squares minimizes $Q(\beta_0, \beta_1)$ over all (β_0, β_1) . Calculus shows that the least squares estimators are

$$b_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2}$$

$$b_0 = \bar{Y} - b_1 \bar{X}$$

Proof:

$$\begin{aligned} \frac{\partial Q}{\partial \beta_1} &= \sum_{i=1}^n 2(Y_i - \beta_0 - \beta_1 X_i)(-X_i) = -2\left[\sum_{i=1}^n X_i Y_i - \beta_0 \sum_{i=1}^n X_i - \beta_1 \sum_{i=1}^n X_i^2\right],\\ \frac{\partial Q}{\partial \beta_0} &= \sum_{i=1}^n 2(Y_i - \beta_0 - \beta_1 X_i)(-1) = -2\left[\sum_{i=1}^n Y_i - n\beta_0 - \beta_1 \sum_{i=1}^n X_i\right].\end{aligned}$$

Setting these equal to zero, and dropping indexes on the summations, we have

$$\left\{\begin{array}{rcl} \sum X_i Y_i &=& b_0 \sum X_i + b_1 \sum X_i^2 \\ \sum Y_i &=& nb_0 + b_1 \sum X_i \end{array}\right\} \Leftarrow \text{``normal'' equations}$$

Multiply the first by *n* and multiply the second by $\sum X_i$ and subtract yielding

$$n\sum X_iY_i-\sum X_i\sum Y_i=b_1\left[n\sum X_i^2-\left(\sum X_i\right)^2\right].$$

Solving for b_1 we get

$$b_1 = \frac{n \sum X_i Y_i - \sum X_i \sum Y_i}{n \sum X_i^2 - (\sum X_i)^2} = \frac{\sum X_i Y_i - n \overline{Y} \overline{X}}{\sum X_i^2 - n \overline{X}^2}.$$

Not quite as nice as (1.10) p. 17)

The second normal equation immediately gives

$$b_0=\bar{Y}-b_1\bar{X}.$$

Our solution for b_1 is correct but not as aesthetically pleasing as the purported solution

$$b_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2}.$$

Show

$$\sum (X_i - \bar{X})(Y_i - \bar{Y}) = \sum X_i Y_i - n \bar{Y} \bar{X}$$
$$\sum (X_i - \bar{X})^2 = \sum X_i^2 - n \bar{X}^2$$

The line $\hat{Y} = b_0 + b_1 X$ is called the *least squares* estimated regression line. Why are the least squares estimates (b_0, b_1) "good?"

- They are unbiased: $E(b_0) = \beta_0$ and $E(b_1) = \beta_1$.
- Among all linear unbiased estimators, they have the smallest variance. They are **b**est linear **u**nbiased **e**stimators, BLUEs.

We will show the first property next. The second property is formally called the "Gauss-Markov" theorem (1.11) and is proved in linear models (page 18).

 b_0 and b_1 are unbiased (Section 2.1, p. 42) Recall that least-squares estimators (b_0, b_1) are given by:

$$b_1 = \frac{n \sum X_i Y_i - \sum X_i \sum Y_i}{n \sum X_i^2 - (\sum X_i)^2} = \frac{\sum X_i Y_i - n \overline{Y} \overline{X}}{\sum X_i^2 - n \overline{X}^2},$$

and

$$b_0=\bar{Y}-b_1\bar{X}.$$

Note that the numerator of b_1 can be written

$$\sum X_i Y_i - n \overline{Y} \overline{X} = \sum X_i Y_i - \overline{X} \sum Y_i = \sum (X_i - \overline{X}) Y_i.$$

Keep going...

Then the expectation of b_1 's numerator is

$$E\left\{\sum(X_i - \bar{X})Y_i\right\} = \sum(X_i - \bar{X})E(Y_i)$$

= $\sum(X_i - \bar{X})(\beta_0 + \beta_1 X_i)$
= $\beta_0 \sum X_i - n\bar{X}\beta_0 + \beta_1 \sum X_i^2 - n\bar{X}^2\beta_1$
= $\beta_1 \left(\sum X_i^2 - n\bar{X}^2\right)$

Finally,

$$E(b_1) = \frac{E\{\sum(X_i - \bar{X})Y_i\}}{\sum X_i^2 - n\bar{X}^2} \\ = \frac{\beta_1(\sum X_i^2 - n\bar{X}^2)}{\sum X_i^2 - n\bar{X}^2} \\ = \beta_1.$$

Book notation

In Chapter 2, the text expresses the slope parameter estimate as

$$b_1 = \sum k_i Y_i,$$
 where $k_i = rac{\left(X_i - ar{X}
ight)}{\sum \left(X_i - ar{X}
ight)^2}$

The k_i have several interesting properties that can be used again and again:

$$\sum_{i} k_{i} = 0$$

$$\sum_{i} k_{i}X_{i} = 1$$

$$\sum_{i} k_{i}^{2} = \frac{1}{\sum (X_{i} - \bar{X})^{2}}$$

Also,

$$E(b_0) = E(\bar{Y} - b_1\bar{X})$$

= $\frac{1}{n}\sum E(Y_i) - E(b_1)\bar{X}$
= $\frac{1}{n}\sum [\beta_0 + \beta_1X_i] - \beta_1\bar{X}$
= $\frac{1}{n}[n\beta_0 + n\beta_1\bar{X}] - \beta_1\bar{X}$
= $\beta_0.$

As promised, b_1 is unbiased for β_1 and b_0 is unbiased for β_0 .

- proc reg and proc glm fit regression models.
- Both include a model statement that tells SAS what the explanatory variable(s) are (on the right of = separated by spaces) and the response (on the left).

```
data whale;
input liver tooth @@;
label liver="Liver Se (mcg/g)"; label tooth="Tooth Se (ng/g)";
datalines;
6.23 140.16 6.79 133.32 7.92 135.34 8.02 127.82 9.34 108.67
10.00 146.22 10.57 131.18 11.04 145.51 12.36 163.24 14.53 136.55
15.28 112.63 18.68 245.07 22.08 140.48 27.55 177.93 32.83 160.73
36.04 227.60 37.74 177.69 40.00 174.23 41.23 206.30 45.47 141.31
;
proc reg;
model liver=tooth;
```

Whale Selenium, SAS output

The REG Procedure Model: MODEL1 Dependent Variable: liver Liver Se (mcg/g)							
	Number	Observations Read 20					
Number of			Observations Used 20				
Analysis of Variance							
			Sum of	Mean			
Source	DI	7	Squares	Square	F Va	lue	Pr > F
Model		1	992.10974	992.10974	7	.31	0.0146
Error 1		3	2444.58376	135.81021			
Corrected Total 19		Э	3436.69350				
	Root MSE		11.65376	R-Square	0.2887	,	
	Dependent Mean	ı	20.68500	Adj R-Sq	0.2492	2	
	Coeff Var		56.33920				
Parameter Estimates							
			Parameter	Standa	rd		
Variable	Label	DF	Estimate	Err	or t	Value	Pr > t
Intercept	Intercept	1	-10.69641	11.899	54	-0.90	0.3806
tooth	Tooth Se (ng/g)	1	0.20039	0.074	14	2.70	0.0146

From this, $b_0 = -10.69$, $b_1 = 0.2004$, and $\hat{\sigma} = 11.65$. Interpretation of each?