Chapters 1 and 2

Adapted from Timothy Hanson
Department of Statistics, University of South Carolina

Stat 704: Data Analysis |
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Toluca data (p. 19)

Toluca makes replacement parts for refrigerators.

We consider one particular part, manufactured in varying lot
sizes.

@ It takes time to set up production regardless of lot size; this
time plus machining & assembly makes up work hours.

We want to relate work hours to lot size.
n = 25 pairs (Xj, Y;) were obtained.
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Toluca data, scatterplot & regression in SAS

data toluca;

input size hours QQ;

label size="Lot Size (parts/lot)"; label hours="Work Hours";

datalines;
80 399 30 121 50 221 90 376 70 361 60 224 120 546
80 352 100 353 50 157 40 160 70 252 90 389 20 113
110 435 100 420 30 212 50 268 90 377 110 421 30 273
90 468 40 244 80 342 70 323

proc sgplot data=toluca;

scatter x=size y=hours; run;

options nocenter;

proc reg data=toluca; model hours=size; run;



Toluca data, SAS output

The REG Procedure
Dependent Variable: hours Work Hours

Number of
Number of

Source
Model
Error
Corrected

Root MSE
Dependent
Coeff Var

Variable
Intercept
size

Observations Read
Observations Used

25
25

Analysis of Variance

DF

1

23

Total 24

48.82331
Mean 312.28000
15.63447

Label
Intercept
Lot Size (parts/lot)

Sum of
Squares
252378
54825
307203

R-Square
Adj R-Sq

Mean
Square
252378

2383.71562

0.8215
0.8138

Parameter Estimates

DF

1

Parameter
Estimate
62.36586

3.57020

F Value
105.88

Standard
Error
26.17743
0.34697

Pr > F
<.0001

t Value
2.38
10.29

Pr > |tl
0.0259
<.0001
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Toluca data
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Roughly linear trend, no obvious outliers.



Toluca

The fitted model is

hours = 62.37 + 3.570 X lot size.

o A lot size of X = 65 takes Y = 62.37 + 3.570 x 65 = 294
hours to finish, on average.

@ For each unit increase in lot size, the mean time to finish
increases by 3.57 hours.

@ Increasing the lot size by 10 parts increases the time by 35.7
hours, about a week.

@ by = 62.37 is only interpretable for lots of size zero. What
does that mean here?
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Residuals & fitted values, Section 1.6

e The ith fitted value is Y; = by + b1 X;.

e The points (X1, Y1), ..., (X, Y») fall on the line
y = by + bix, the points (X1, Y1),...,(Xn, Yn) do not.

@ The ith residual is
e=Yi—Vi=Yi—(b+bX), i=1..n,

the difference between observed and fitted values.

@ ¢ ‘estimates” ;.



Properties of the residuals (pp. 23-24)

@ > " e =0 (from normal equations)

@ > I, Xie; = 0 (from normal equations)

@ >, Vie,=0(1and?2)

@ Least squares line always goes through (X, Y).



Estimating o2, Section 1.7

o2 is the error variance. A natural starting point for an estimator
2:042__ 150 2
of 0%is 6% = =3 " ; e7. However,

. 1
E(6?) = - > E(Y;— by — b1 X)?
i=1

= ...a lot of hideous algebra later...
n—2
— o2

n

So in the end we use the unbiased mean squared error

n

> (Yi— by — b1 Xi).

i=1

1
n—2

1 &,
I\/ISE:n_2;e,-:



MSE and SSE

So an estimate of var(Y;) = o2 is

n (Y — Y;)? n g2
2 — MSE — SSE _ Yim(Yi—Yi) (: 2ic1 € > .

n—2 n—2 n—2

Then E(MSE) = 02. MSE is automatically given in SAS and R.

s = VvV MSE is an estimator of o, the standard deviation of Y;. Is it
unbiased?

Example: Toluca data. MSE = 2383.72 hours? and
vV MSE = 48.82 hours from the SAS output.
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Chapter 2: Normal errors regression

@ So far we have only assumed E(¢;) = 0 and var(e;) = 2.

@ We can additionally assume

€1y En S N(0,0?).

o This allows us to make inference about 5y, 31, and obtain
prediction intervals for a new Y}, with covariate X,.

@ The model is, succinctly,

\/i i'}\‘j- N(BO +B1Xi702)7 = 15" -y N
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by and b; are MLEs

Fact: Under the assumption of normality, the least squares
estimators (bg, b1) are also maximum likelihood estimators (pp.

27-30) for (8o, 51).

The likelihood of (3o, f1,0?) is the density of the data given these
parameters (p. 31):

£(ﬁ0>61a02) = f(y17--~;}/n‘60;51,0'2)
"’g- Hf(yi|5076170.2)

i=1

o1
’.1:[1 V2mo? P (_
= (210?) " exp (—;2 Z(y,' — Bo — ﬁlXi)2> .



LS = MLE under normality

L(Bo, B1,0?) is maximized when "7 (y; — Bo — B1x)? is as small
as possible.

= Least-squares estimators are MLEs too!

The MLE of o2 is, instead, 6% = % LS"7 , e?; the denominator
changes.
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Section 2.1: Inferences on (3;

The least squares estimator for the slope is by is

S =X)Yi ¢ (X — X)
= SRy
Z(Xl - X) i=1 Z_j 1(X X)
Thus, by is a linear combination n independent normal random
variables Y1, ..., Y,. Therefore

0_2
i N <51’ ST —>‘<>2> |

We computed E(b;1) = (1 before; we use the standard result for
the variance of a linear combination of independent random
variables for the variance.

14 /32



se(by) estimates sd(by)

So,

o2

Do (xi — %)%
Take by, subtract off its mean, and divide by its standard deviation
and you've got...

o{bi} =

~ N(0,1).
We will never know o{b; }; we estimate it by

MSE
Z?:l(xi —Xx)?

Question: How do we make 02{b;} as small as possible (p. 50)?
If we do this, we cannot actually check the assumption of linearity.

se(by) =
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Confidence interval for 3, and testing Hy : 81 = Bio

Fact:
by — 31
se(b1)

A (1 — «)100% ClI for B has endpoints

~ th2.

b1 £ tn,2(1 — a/2)se(b1).

Under Hp : 81 = B1o,

P-values are computed as usual.

Note: Of particular interest is Hp : 51 = 0, that E(Y;) = 5o and
does not depend on X;. That is, “Hg: X; is useless in predicting
i
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Table of regression coefficients

Regression output typically produces a table like:

Parameter Estimate  Standard error t* p-value
Intercept SBo bo se(bo) ty = sefgo) P(ITI| > [t5])
Slope 1 by se(b1) tf=aty  PUTI> D)

where T ~ t,_, and p is the number of parameters used to
estimate the mean, here p = 2: By and (1. Later p will be the
number of predictors in the model plus one.

The two p-values in the table test Hy : Bg =0and Hp: 51 =0
respectively. The test for zero intercept is usually not of interest.
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Toluca data

Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|
Intercept Intercept 1 62.36586 26.17743 2.38 0.0259
size Lot Size (parts/lot) 1 3.57020 0.34697 10.29 <.0001

We reject Hp : 1 = 0 at any reasonable significance level
(P < 0.0001). There is a significant linear association between lot
size and hours worked.

Note se(by) = 0.347, t{ = 225 = 10.3, and
P(|t23| > 10.3) < 0.0001.

We can test non-zero 31 with a specific form of the TEST
statement in PROC REG. E.g., sloped4: test size=4;
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2.2 Inference about the intercept 3y

The intercept usually is not very interesting, but just in case...

Write by as a linear combination of Yy,..., Y, as we did with the
slope:

e

_ S |1 X(X; — X)
b"zy_blxzzl ST 0%~ X
i=1 J=1\"Y

After some slogging, this leads to

N
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bo—0Bo
se(bp)

Distribution of

Define se(bo) = \/ MSE |3+ s
i=1 1

bo — Bo
se(bo)

Obtain Cls and tests about Sy as usual...

and you're in business:

~ th_o.



2.4 Estimating E(Y})

Estimating E(Y},) = Bo + f1Xh
(e.g. inference about the regression line)
Let Xj, be any predictor, say we want to estimate the mean of all
outcomes in the population that have covariate Xj,. This is given
by

E(Yn) = Bo + B1Xn.

Our estimator of this is

A

Yo = bo+ b1 Xy

~ (1 Mm—k)_%(&—th
n Zjn:l(xl - X)? ZJn:l(X/ - X)2




Distribution of \A/h

Again we have a linear combination of independent normals as our
estimator. This leads, after slogging through some math (pp.
53-54), to

1 (Xp — X)?
bo + by Xy ~ N (Bo + 51X, 0° [ " 2_(><—X>D |

As before, this leads to a (1 — «)100% Cl for Sy + 51X

by + b1 Xy £+ tn_2(1 — a/2)se(bo + leh),

where se(by + b1 Xp) = \/MSE [% + ZEL)?TX—);V _

Question: For what value of x;, is the Cl narrowist? What
happens when X}, moves away from X7

N
N
w
S



2.5 Prediction intervals

@ We discussed constructing a Cl for the unknown mean at X,
Bo + 1 Xh.

@ What if we want to find an interval that contains a single Y}
with fixed probability?

o If we knew By, f1, and o2 this is easy:
Yh = fo + B1Xn + €n,
and so, for example,
P(Bo + B1Xn — 1.960 < Y}, < Bo + 1.Xp + 1.960) = 0.95.

@ Unfortunately, we don't know By and 1. We don't even know
o, but we can construct a random variable with a t
distribution to develop an appropriate prediction interval.



Variability of Y}, — \A/h

An interval that contains Y}, (independent of Yi,...,Y},) with
(1 — o) probability needs to account for
@ The variability of the least squares line by + b1 X, and

@ The natural variability of response Y}, built into the model,
en ~ N(0,02).

We have
Uz{Yh—\A/h} ind Uz{Yh}+02{\A/h}

oo o[l (P
o [n+27:1(x;—>‘<>2]



Prediction interval

Since Yh — \A/h ~ N (0,02 {Yh - S\/h}),

Y, - Y,
. oy 2
6{Yh _ Yh}

We thus obtain a (1 — «/2)100% prediction interval (Pl) for Yp:

1 (Xp, — X)?
b i Xy £ tho(l—a/2)4 | MSE |1+ - + ———=—1|.
o + b1 X o(1—a/ )\/ [ +”+Z7:1(XI_X)2

Note: As n — o0, by L Bo, b1 L 51,

th2(l —a/2) = 711 - «a/2), and MSE £ 2. That is, as the
sample size grows, the prediction interval converges to

Bo + Bixp £ 71 — a/2)o.



Example: Toluca data

o Find a 95% ClI for the mean number of work hours for lots of
size Xj = 65 units.

e Find a 95% PI for the number of work hours for a lot of size
Xp = 65 units.

@ Repeat both for X;, = 100 units.
@ SAS code follows...



SAS code

data toluca;

input size hours @@;

label size="Lot Size (parts/lot)";

label hours="Work Hours";

datalines;
80 399 30 121 50 221 90 376 70 361 60 224 120 546
80 352 100 353 50 157 40 160 70 252 90 389 20 113
110 435 100 420 30 212 50 268 90 377 110 421 30 273
90 468 40 244 80 342 70 323

H

proc sql;

insert into toluca
(size)

values(65)
values(100);

quit;

options nocenter;

proc reg data=toluca;

model hours=size / clm cli alpha=0.05;
run;
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SAS output

Obs

[RIINI

Dependent
Variable
399.0000
121.0000
221.0000

342.0000
323.0000

Pred

347.
169.
240.

347.
312.
294.
419.

icted
Value
9820
4719
8760

Std Error
Mean Predict
10.3628
16.9697
11.9793

10.3628
9.7647
9.9176

14.2723

Output Statistics

957, CL
326.5449
134.3673
216.0948

...et cetera..

326.5449
292.0803
273.9129
389.8615

Mean

369.4191
204.5765
265.6571

369.4191
332.4797
314.9451
448.9106

95% CL Predict

244.7333
62.5464
136.8815

244.7333
209.2811
191.3676
314.1604

451.2307
276.3975
344.8704

451.2307
415.2789
397.4904
524.6117

Residual

51.0180
-48.4719
-19.8760

-5.9820
10.7200
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More SAS code & output

proc reg data=toluca;

model hours=size / clm cli alpha=0.05;

output out=regstats lclm=lclm uclm=uclm lcl=lcl ucl=ucl

run;

proc print data=regstats;
var hours size lclm uclm lcl ucl pred;

run;

Obs

W N R

hours

399
121
221

342
323

size
80
30
50

lclm

326.
134.
216.

326.
292.
273.
389.

545
367
095

545

080
913
862

uclm
369.419
204.577
265.657

369.419
332.480
314.945
448.911

lcl

244.
62.
136.
..et cetera...

244.
209.
191.
314.

733
546
882

733
281
368
160

p=pred r=r;

ucl

451.
276.
344.

451.
415.
397.
524.

397
870

231

490
612

pred

347.
169.
240.

347.
312.
294.
419.

982
472
876

982
280
429
386
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SAS plot of 95% Cl for mean & prediction intervals

proc sgplot data=toluca;
reg x=size y=hours / clm cli;
run;

600 4

500

400+

300+

Work Hours

200

1004

T T
25 50 75 100 125
Lot Size (parts/lot)

95% Prediction Limits [ 95% Confidence Limits Regression \
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taining confidence intervals fo

SAS code:

options nocenter;
proc reg data=toluca;
model hours=size / clb alpha=0.01;

run;
Output:
Parameter Estimates
Parameter Standard
Variable Label DF Estimate Error t Value
Intercept Intercept 1 62.36586  26.17743 2.38
size Lot Size (parts/lot) 1 3.57020 0.34697 10.29

Pr > |tl
0.0259
<.0001

99% Confidence Limits

-11.12299
2.59613

135.85470
4.54427

31

32



2.6 Credible band for regression function

o Gives region that entire regression line lies in with certain
probability /confidence.

e Given by
S\/h + W se{\A/h} =by+ b Xp W Se{bo + b1X,,}

where W2 =2F(1 — a;2,n—2)
@ Defined for X, € R. Ignore for nonsense values of Xj,.

o Not straightforward to get in SAS (or other packages).



