Chapters 1 and 2

Adapted from Timothy Hanson

Department of Statistics, University of South Carolina

Stat 704: Data Analysis I

Toluca data (p. 19)

- Toluca makes replacement parts for refrigerators.
- We consider one particular part, manufactured in varying lot sizes.
- It takes time to set up production regardless of lot size; this time plus machining & assembly makes up work hours.
- We want to relate work hours to lot size.
- n = 25 pairs (X_i, Y_i) were obtained.

Toluca data, scatterplot & regression in SAS

```
data toluca:
input size hours @@;
label size="Lot Size (parts/lot)"; label hours="Work Hours";
datalines:
  80
      399
            30
               121
                     50
                         221
                              90
                                  376
                                        70
                                            361
                                                 60
                                                     224
                                                          120
                                                              546
  80 352
           100 353
                     50 157
                              40
                                  160 70 252
                                                 90
                                                     389
                                                           20 113
  110 435
           100 420
                     30 212
                               50
                                  268
                                        90 377
                                                110 421
                                                           30 273
  90 468
            40 244
                     80 342
                               70
                                  323
proc sgplot data=toluca;
scatter x=size y=hours; run;
options nocenter;
proc reg data=toluca; model hours=size; run;
```

Toluca data, SAS output

The REG Procedure

Dependent Variable: hours Work Hours

Number of Observations Read 25 Number of Observations Used 25

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1	252378	252378	105.88	<.0001
Error	23	54825	2383.71562		
Corrected Total	24	307203			
Root MSE	48.82331	R-Square	0.8215		
Dependent Mean	312.28000	Adj R-Sq	0.8138		
Coeff Var	15.63447				

Parameter Estimates

			Parameter	Standard		
Variable	Label	DF	Estimate	Error	t Value	Pr > t
Intercept	Intercept	1	62.36586	26.17743	2.38	0.0259
size	Lot Size (parts/lot)	1	3.57020	0.34697	10.29	<.0001

Toluca data



Roughly linear trend, no obvious outliers.

Toluca

The fitted model is

$$\widehat{\mathsf{hours}} = 62.37 + 3.570 \times \mathsf{lot}$$
 size.

- A lot size of X=65 takes $\hat{Y}=62.37+3.570\times 65=294$ hours to finish, on average.
- For each unit increase in lot size, the mean time to finish increases by 3.57 hours.
- Increasing the lot size by 10 parts increases the time by 35.7 hours, about a week.
- $b_0 = 62.37$ is only interpretable for lots of size zero. What does that mean here?

Residuals & fitted values, Section 1.6

- The *i*th **fitted value** is $\hat{Y}_i = b_0 + b_1 X_i$.
- The points $(X_1, \hat{Y}_1), \dots, (X_n, \hat{Y}_n)$ fall on the line $y = b_0 + b_1 x$, the points $(X_1, Y_1), \dots, (X_n, Y_n)$ do not.
- The *i*th **residual** is

$$e_i = Y_i - \hat{Y}_i = Y_i - (b_0 + b_1 X_i), \quad i = 1, \dots, n,$$

the difference between observed and fitted values.

• e_i "estimates" ϵ_i .

Properties of the residuals (pp. 23–24)

- Least squares line always goes through (\bar{X}, \bar{Y}) .

Estimating σ^2 , Section 1.7

 σ^2 is the error variance. A natural starting point for an estimator of σ^2 is $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n e_i^2$. However,

$$E(\hat{\sigma}^2) = \frac{1}{n} \sum_{i=1}^n E(Y_i - b_0 - b_1 X_i)^2$$
= ...a lot of hideous algebra later...
$$= \frac{n-2}{n} \sigma^2.$$

So in the end we use the unbiased *mean squared error*

$$MSE = \frac{1}{n-2} \sum_{i=1}^{n} e_i^2 = \frac{1}{n-2} \sum_{i=1}^{n} (Y_i - b_0 - b_1 X_i)^2.$$

MSE and SSE

So an estimate of $var(Y_i) = \sigma^2$ is

$$s^2 = MSE = \frac{SSE}{n-2} = \frac{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}{n-2} \left(= \frac{\sum_{i=1}^{n} e_i^2}{n-2} \right).$$

Then $E(MSE) = \sigma^2$. MSE is automatically given in SAS and R. $s = \sqrt{MSE}$ is an estimator of σ , the standard deviation of Y_i . Is it unbiased?

Example: Toluca data. $MSE = 2383.72 \text{ hours}^2$ and $\sqrt{MSE} = 48.82 \text{ hours from the SAS output.}$

Chapter 2: Normal errors regression

- So far we have only assumed $E(\epsilon_i) = 0$ and $var(\epsilon_i) = \sigma^2$.
- We can additionally assume

$$\epsilon_1,\ldots,\epsilon_n \stackrel{iid}{\sim} N(0,\sigma^2).$$

- This allows us to make *inference* about β_0 , β_1 , and obtain prediction intervals for a new Y_h with covariate X_h .
- The model is, succinctly,

$$Y_i \stackrel{ind.}{\sim} N(\beta_0 + \beta_1 X_i, \sigma^2), \quad i = 1, \ldots, n.$$

b_0 and b_1 are MLEs

Fact: Under the assumption of normality, the least squares estimators (b_0, b_1) are also maximum likelihood estimators (pp. 27–30) for (β_0, β_1) .

The *likelihood* of $(\beta_0, \beta_1, \sigma^2)$ is the density of the data given these parameters (p. 31):

$$\mathcal{L}(\beta_{0}, \beta_{1}, \sigma^{2}) = f(y_{1}, \dots, y_{n} | \beta_{0}, \beta_{1}, \sigma^{2})$$

$$\stackrel{ind.}{=} \prod_{i=1}^{n} f(y_{i} | \beta_{0}, \beta_{1}, \sigma^{2})$$

$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left(-0.5 \frac{(y_{i} - \beta_{0} - \beta_{1}x_{i})^{2}}{\sigma^{2}}\right)$$

$$= (2\pi\sigma^{2})^{-n/2} \exp\left(-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (y_{i} - \beta_{0} - \beta_{1}x_{i})^{2}\right).$$

LS = MLE under normality

 $\mathcal{L}(\beta_0, \beta_1, \sigma^2)$ is maximized when $\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2$ is as small as possible.

⇒ Least-squares estimators are MLEs too!

The MLE of σ^2 is, instead, $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n e_i^2$; the denominator changes.

Section 2.1: Inferences on β_1

The least squares estimator for the slope is b_1 is

$$b_1 = \frac{\sum (X_i - \bar{X})Y_i}{\sum (X_i - \bar{X})^2} = \sum_{i=1}^n \left[\frac{(X_i - \bar{X})}{\sum_{j=1}^n (X_j - \bar{X})^2} \right] Y_i.$$

Thus, b_1 is a linear combination n independent normal random variables Y_1, \ldots, Y_n . Therefore

$$b_1 \sim N\left(\beta_1, \frac{\sigma^2}{\sum_{i=1}^n (X_i - \bar{X})^2}\right).$$

We computed $E(b_1) = \beta_1$ before; we use the standard result for the variance of a linear combination of independent random variables for the variance.

$se(b_1)$ estimates $sd(b_1)$

So,

$$\sigma\{b_1\} = \sqrt{\frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}.$$

Take b_1 , subtract off its mean, and divide by its standard deviation and you've got...

$$\frac{b_1-\beta_1}{\sigma\{b_1\}}\sim N(0,1).$$

We will never know $\sigma\{b_1\}$; we estimate it by

$$se(b_1) = \sqrt{\frac{MSE}{\sum_{i=1}^n (x_i - \bar{x})^2}}.$$

Question: How do we make $\sigma^2\{b_1\}$ as small as possible (p. 50)? If we do this, we cannot actually check the assumption of linearity.

Confidence interval for β_1 and testing H_0 : $\beta_1 = \beta_{10}$

Fact:

$$\frac{b_1-\beta_1}{\mathsf{se}(b_1)}\sim t_{n-2}.$$

A $(1-\alpha)100\%$ CI for β_1 has endpoints

$$b_1 \pm t_{n-2}(1-\alpha/2)se(b_1).$$

Under H_0 : $\beta_1 = \beta_{10}$,

$$t^* = rac{b_1 - eta_{10}}{se(b_1)} \sim t_{n-2}.$$

P-values are computed as usual.

Note: Of particular interest is H_0 : $\beta_1 = 0$, that $E(Y_i) = \beta_0$ and does not depend on X_i . That is, " H_0 : X_i is useless in predicting Y_i ."

Table of regression coefficients

Regression output typically produces a table like:

Parameter	Estimate	Standard error	t^*	p-value
Intercept β_0	b_0	$se(b_0)$	$t_0^* = \frac{b_0}{\operatorname{se}(b_0)}$	$P(T > t_0^*)$
Slope β_1	b_1	$se(b_1)$	$t_1^* = rac{b_1}{\operatorname{se}(b_1)}$	$P(T > t_1^*)$

where $T \sim t_{n-p}$ and p is the number of parameters used to estimate the mean, here p=2: β_0 and β_1 . Later p will be the number of predictors in the model plus one.

The two p-values in the table test H_0 : $\beta_0 = 0$ and H_0 : $\beta_1 = 0$ respectively. The test for zero intercept is usually not of interest.

Toluca data

			Parameter	Standard		
Variable	Label	DF	Estimate	Error	t Value	Pr > t
Intercept	Intercept	1	62.36586	26.17743	2.38	0.0259
size	Lot Size (parts/lot)	1	3.57020	0.34697	10.29	<.0001

We reject H_0 : $\beta_1=0$ at any reasonable significance level (P<0.0001). There is a significant linear association between lot size and hours worked.

Note
$$se(b_1)=0.347$$
, $t_1^*=\frac{3.57}{0.347}=10.3$, and $P(|t_{23}|>10.3)<0.0001$.

We can test non-zero β_1 with a specific form of the TEST statement in PROC REG. E.g., slope4: test size=4;

2.2 Inference about the intercept β_0

The intercept usually is not very interesting, but just in case...

Write b_0 as a linear combination of Y_1, \ldots, Y_n as we did with the slope:

$$b_0 = \bar{Y} - b_1 \bar{X} = \sum_{i=1}^n \left[\frac{1}{n} - \frac{\bar{X}(X_i - \bar{X})}{\sum_{j=1}^n (X_j - \bar{X})^2} \right] Y_i.$$

After some slogging, this leads to

$$b_0 \sim N\left(\beta_0, \sigma^2\left[\frac{1}{n} + \frac{\bar{X}^2}{\sum_{i=1}^n (X_i - \bar{X})^2}\right]\right).$$

Distribution of $\frac{b_0 - \beta_0}{se(b_0)}$

Define
$$\operatorname{se}(b_0) = \sqrt{MSE\left[\frac{1}{n} + \frac{\bar{X}^2}{\sum_{i=1}^n (X_i - \bar{X})^2}\right]}$$
 and you're in business:
$$\frac{b_0 - \beta_0}{\operatorname{se}(b_0)} \sim t_{n-2}.$$

Obtain CIs and tests about β_0 as usual...

2.4 Estimating $E(Y_h)$

Estimating $E(Y_h) = \beta_0 + \beta_1 X_h$

(e.g. inference about the regression line)

Let X_h be any predictor, say we want to estimate the mean of all outcomes in the population that have covariate X_h . This is given by

$$E(Y_h) = \beta_0 + \beta_1 X_h.$$

Our estimator of this is

$$\hat{Y}_{h} = b_{0} + b_{1}X_{h}
= \sum_{i=1}^{n} \left[\frac{1}{n} - \frac{\bar{X}(X_{i} - \bar{X})}{\sum_{j=1}^{n} (X_{j} - \bar{X})^{2}} + \frac{(X_{i} - \bar{X})X_{h}}{\sum_{j=1}^{n} (X_{j} - \bar{X})^{2}} \right] Y_{i}
= \sum_{i=1}^{n} \left[\frac{1}{n} + \frac{(X_{h} - \bar{X})(X_{i} - \bar{X})}{\sum_{j=1}^{n} (X_{j} - \bar{X})^{2}} \right] Y_{i}$$

Distribution of \hat{Y}_h

Again we have a linear combination of independent normals as our estimator. This leads, after slogging through some math (pp. 53–54), to

$$b_0 + b_1 X_h \sim N \left(\beta_0 + \beta_1 X_h, \sigma^2 \left[\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\sum_{i=1}^n (X_i - \bar{X})^2} \right] \right).$$

As before, this leads to a $(1-\alpha)100\%$ CI for $\beta_0+\beta_1X_h$

$$b_0 + b_1 X_h \pm t_{n-2} (1 - \alpha/2) se(b_0 + b_1 X_h),$$

where se(
$$b_0 + b_1 X_h$$
) = $\sqrt{MSE\left[\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\sum_{i=1}^n (X_i - \bar{X})^2}\right]}$.

Question: For what value of x_h is the CI narrowist? What happens when X_h moves away from \bar{X} ?

2.5 Prediction intervals

- We discussed constructing a CI for the unknown mean at X_h , $\beta_0 + \beta_1 X_h$.
- What if we want to find an interval that contains a single Y_h with fixed probability?
- If we knew β_0 , β_1 , and σ^2 this is easy:

$$Y_h = \beta_0 + \beta_1 X_h + \epsilon_h,$$

and so, for example,

$$P(\beta_0 + \beta_1 X_h - 1.96\sigma \le Y_h \le \beta_0 + \beta_1 X_h + 1.96\sigma) = 0.95.$$

• Unfortunately, we don't know β_0 and β_1 . We don't even know σ , but we can construct a random variable with a t distribution to develop an appropriate *prediction interval*.

Variability of $Y_h - \hat{Y}_h$

An interval that contains Y_h (independent of Y_1, \ldots, Y_n) with $(1 - \alpha)$ probability needs to account for

- The variability of the least squares line $b_0 + b_1 X_h$, and
- ② The natural variability of response Y_h built into the model; $\epsilon_h \sim N(0, \sigma^2)$.

We have

$$\sigma^{2} \left\{ Y_{h} - \hat{Y}_{h} \right\} \stackrel{ind}{=} \sigma^{2} \left\{ Y_{h} \right\} + \sigma^{2} \left\{ \hat{Y}_{h} \right\}$$

$$= \sigma^{2} + \sigma^{2} \left[\frac{1}{n} + \frac{(X_{h} - \bar{X})^{2}}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}} \right]$$

$$= \sigma^{2} \left[1 + \frac{1}{n} + \frac{(X_{h} - \bar{X})^{2}}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}} \right]$$

Prediction interval

Since
$$Y_h - \hat{Y}_h \sim N\left(0, \sigma^2\left\{Y_h - \hat{Y}_h\right\}\right)$$
,
$$\frac{Y_h - \hat{Y}_h}{\hat{\sigma}\left\{Y_h - \hat{Y}_h\right\}} \sim t_{n-2}$$

We thus obtain a $(1 - \alpha/2)100\%$ prediction interval (PI) for Y_h :

$$b_0 + b_1 X_h \pm t_{n-2} (1 - \alpha/2) \sqrt{MSE \left[1 + \frac{1}{n} + \frac{(X_h - \bar{X})^2}{\sum_{i=1}^n (X_i - \bar{X})^2} \right]}.$$

Note: As $n \to \infty$, $b_0 \stackrel{P}{\to} \beta_0$, $b_1 \stackrel{P}{\to} \beta_1$, $t_{n-2}(1-\alpha/2) \to \Phi^{-1}(1-\alpha/2)$, and $MSE \stackrel{P}{\to} \sigma^2$. That is, as the sample size grows, the prediction interval converges to

$$\beta_0 + \beta_1 x_h \pm \Phi^{-1} (1 - \alpha/2) \sigma.$$

Example: Toluca data

- Find a 95% CI for the mean number of work hours for lots of size $X_h = 65$ units.
- Find a 95% PI for the number of work hours for a lot of size $X_h = 65$ units.
- Repeat both for $X_h = 100$ units.
- SAS code follows...

SAS code

```
data toluca;
input size hours @@;
label size="Lot Size (parts/lot)";
label hours="Work Hours";
datalines:
  80 399
          30 121
                    50 221
                                 376
                                       70 361
                                                60 224 120 546
                  50 157 40 160
  80 352 100 353
                                      70 252
                                               90 389 20 113
 110 435 100 420
                  30 212 50 268
                                       90 377 110 421 30 273
  90 468 40 244 80 342 70 323
proc sql;
insert into toluca
(size)
values (65)
values(100):
quit;
options nocenter;
proc reg data=toluca;
model hours=size / clm cli alpha=0.05;
run;
```

SAS output

Output Statistics

	Dependent	Predicted	Std Error					
Obs	Variable	Value	Mean Predict	95% C	L Mean	95% CL	Predict	Residual
1	399.0000	347.9820	10.3628	326.5449	369.4191	244.7333	451.2307	51.0180
2	121.0000	169.4719	16.9697	134.3673	204.5765	62.5464	276.3975	-48.4719
3	221.0000	240.8760	11.9793	216.0948	265.6571	136.8815	344.8704	-19.8760
				et ceter	a			
24	342.0000	347.9820	10.3628	326.5449	369.4191	244.7333	451.2307	-5.9820
25	323.0000	312.2800	9.7647	292.0803	332.4797	209.2811	415.2789	10.7200
26		294.4290	9.9176	273.9129	314.9451	191.3676	397.4904	
27		419.3861	14.2723	389.8615	448.9106	314.1604	524.6117	

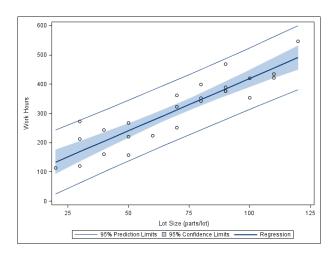
More SAS code & output

proc reg data=toluca:

```
model hours=size / clm cli alpha=0.05;
output out=regstats lclm=lclm uclm=uclm lcl=lcl ucl=ucl p=pred r=r;
run:
proc print data=regstats;
var hours size lclm uclm lcl ucl pred;
run;
               size
                         lclm
                                    uclm
                                               lcl
                                                          ucl
                                                                     pred
Obs
       hours
       399
                 80
                       326.545
                                  369.419
                                             244.733
                                                        451.231
                                                                   347.982
  1
       121
                 30
                       134.367
                                  204.577
                                              62.546
                                                        276.397
                                                                   169.472
       221
                  50
                       216.095
                                  265.657
                                             136.882
                                                        344.870
                                                                   240.876
                               ...et cetera...
 24
       342
                 80
                       326.545
                                  369.419
                                             244.733
                                                        451.231
                                                                   347.982
25
       323
                 70
                       292.080
                                  332.480
                                             209.281
                                                        415.279
                                                                   312.280
26
                 65
                       273.913
                                 314.945
                                             191.368
                                                       397.490
                                                                   294.429
27
                100
                       389.862
                                 448.911
                                             314.160
                                                        524.612
                                                                   419.386
```

SAS plot of 95% CI for mean & prediction intervals

```
proc sgplot data=toluca;
  reg x=size y=hours / clm cli;
run;
```



Obtaining confidence intervals for β_0 and β_1

SAS code:

```
options nocenter;
proc reg data=toluca;
model hours=size / clb alpha=0.01;
run;
```

Output:

Parameter Estimates

		Parameter	Standard				
Variable Label	DF	Estimate	Error	t Value	Pr > t	99% Confid	dence Limits
Intercept Interd	ept 1	62.36586	26.17743	2.38	0.0259	-11.12299	135.85470
size Lot S:	ze (parts/lot) 1	3.57020	0.34697	10.29	<.0001	2.59613	4.54427

2.6 Credible band for regression function

- Gives region that entire regression line lies in with certain probability/confidence.
- Given by

$$\hat{Y}_h\pm W$$
 se $\{\hat{Y}_h\}=b_0+b_1X_h\pm W$ se $\{b_0+b_1X_h\}$ where $W^2=2F(1-lpha;2,n-2)$

- Defined for $X_h \in \mathbb{R}$. Ignore for nonsense values of X_h .
- Not straightforward to get in SAS (or other packages).