
Chapter 5
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Chapter 3: Diagnostics

Section 3.1: Outlying x-values can be found via boxplot (or a
scatterplot!) Useful for assessing extrapolation. More
advanced method in Sec. 10.3 for multiple predictors.

Section 3.2: Recall ei = Yi − Ŷi is ith residual. The
(externally) studentized residual ti (defined on p. 396) has a
tn−3 distribution.

Section 3.3: Plots to consider
1 Plot of ei vs. Ŷi or ei vs. xi : nonlinearity means line β0 + β1xi

inappropriate. Nonconstant variance means var(εi ) = σ2 not
appropriate. Outlying observations (very large or small
residuals) can indicate several potential problems (later).

2 Histogram or boxplot of ei , normal probability plot of ei to
check normality. Expect one outlier out of 150 observations for
truly normal data in boxplot. There are also formal tests for
normality (later).
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5.1 Matrices

A matrix is a rectangular array of numbers. Here’s an example:

A =

[
2.3 −1.4 17

−22.5 0
√

2

]
.

This matrix has dimensions 2× 3. The number of rows is first,
then the number of columns.

We can write the n × p matrix X abstractly as

X =


x11 x12 x13 · · · x1p
x21 x22 x23 · · · x2p
x31 x32 x33 · · · x3p

...
...

...
. . .

...
xn1 xn2 xn3 · · · xnp

 .
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Other notation

Another notation that is common is A = [aij ]n×m for an n ×m
matrix A with element aij in the i th row and j th column.

The matrix X on the previous page would then be written

X = [xij ]n×p.
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5.1 (cont’d) Transpose

The transpose of a matrix A′ takes the matrix A and makes the
rows the columns and the columns the rows. Precisely, if

A = [aij ]n×m then A′ is the m × n matrix with elements a′ij = aji .
For example:

If A =

[
1 2 3
4 5 6

]
, then A′ =

 1 4
2 5
3 6

 .
Question: what is (A′)′?
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5.2 Matrix addition

If two matrices A = [aij ]n×m and B = [bij ]n×m have the same
dimensions, you can add them together, element by element, to
get a new matrix C = [cij ]n×m. That is, C = A + B is the matrix
with elements cij = aij + bij . For example, −1 −2

5 7
−10 20

+

 1 2
3 4
1 2

 =

 −1 + 1 −2 + 2
5 + 3 7 + 4

−10 + 1 20 + 2

 =

 0 0
8 11
−9 22

 .
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5.3 Multiplying a matrix times a number

Multiplying a matrix A = [aij ] by a number b yields the matrix
C = Ab with elements cij = aijb. For example,

(−2)

 −1 −2
5 7

−10 20

 =

 −1(−2) −2(−2)
5(−2) 7(−2)

−10(−2) 20(−2)

 =

 2 4
−10 −14

20 −40

 .
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Vectors

A vector is a matrix with only one column or row, called a “column
vector” or “row vector” respectively. Here’s an example of each:

x =

 1
−1
14

 , y = [ 1 −1 14 ].

Note that for these vectors, x′ = y and y′ = x.

Special column vectors:

1 =

 1
...
1

 , 0 =

 0
...
0
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Inner product of two vectors

The product of an 1× n row vector and a n × 1 column vector is
the sum of the pairwise products of elements. So if x = [xi ]1×n
and y = [yi ]n×1 then xy =

∑n
i=1 xiyi .

For example, if x = [ −1 2 ] and y =

[
10
−5

]
then

xy = [ −1 2 ]

[
10
−5

]
= −1(10) + 2(−5) = −20.
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Inner product of two vectors

The inner product of two n × 1 column vectors x and y is the
product

x′y = [ x1 x2 x3 · · · xn ]


y1
y2
y3
...

yn

 =
n∑

i=1

xiyi .
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Euclidean distance

Note that if x =

[
x1
x2

]
is a point in the plane R2, then

x′x = x2
1 + x2

2 is the square of the length of x. That is,
||x|| =

√
x′x.

In general, for any point in Rn, x =


x1
x2

...
xn

, x′x = ||x||2.
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Outer product of two vectors

The outer product of two n × 1 column vectors x and y is the
product

xy′ =


x1
x2
x3
...

yn

 [ y1 y2 y3 · · · yn ] = [xiyj ]
n×n .

We often use J to denote a matrix of 1’s. I.e., J = 11′
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5.3 (cont’d) Matrix multiplication

We are now ready to define general matrix multiplication. The
product of an n × p matrix A and a p ×m matrix B is the n ×m
matrix C with elements cij =

∑p
k=1 aikbkj . Let A be comprised of

n 1× p row vectors a1, . . . , an and let B be comprised of m p× 1
column vectors b1, . . . ,bm like

A =


· · · a1 · · ·
· · · a2 · · ·

...
· · · an · · ·


n×p

and B =


...

...
...

b1 b2 · · · bm
...

...
...


p×m

.
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Matrix multiplication

Then cij = aibj

C =


a1b1 a1b2 · · · a1bm
a2b1 a2b2 · · · a2bm

...
...

. . .
...

anb1 anb2 · · · anbm

 .

For example, let A =

[
1 −1 −2
−3 −1 5

]
and

B =

 2 0 −2
0 −5 7
1 0.5 −4

. Then

AB =

[
1(2)− 1(0)− 2(1) 1(0)− 1(−5)− 2(0.5) 1(−2)− 1(7)− 2(−4)
−3(2)− 1(0) + 5(1) −3(0)− 1(−5) + 5(0.5) −3(−2)− 1(7) + 5(−4)

]
=

[
0 4 0
−1 8.5 −21

]
.
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5.4 Identity matrix

On the previous slide, does BA make sense? No. The rows of the
first matrix must be the same length as the columns of the second.
Note that, in general, AB 6= BA.

Define In×n as

I =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 .
Then

An×pIp×p = An×p and In×nAn×p = An×p,

for any An×p. The matrix In×n is called the n × n identity matrix.
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5.4 Identity matrix

For example,[
1 0
0 1

] [
1 −1 −2
−3 −1 5

]
=

[
1 −1 −2
−3 −1 5

]
and [

1 −1 −2
−3 −1 5

] 1 0 0
0 1 0
0 0 1

 =

[
1 −1 −2
−3 −1 5

]
.
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5.6 Matrix inverse

The inverse of a square (p × p) matrix A is the p × p matrix A−1

such that A−1A = AA−1 = Ip×p. For example, if A =

[
1 −1
0 2

]
,

then [
1 −1
0 2

] [
1 1

2
0 1

2

]
=

[
1 0
0 1

]
,

and so A−1 =

[
1 1

2
0 1

2

]
. Note that we must have

[
1 1

2
0 1

2

] [
1 −1
0 2

]
=

[
1 0
0 1

]
as well.
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Finding a 2× 2 inverse

There is an algorithm for finding the inverse of any size matrix but
it is very computationally intensive, except for 2× 2 matrices. Let

A =

[
a11 a12
a21 a22

]
.

Then

A−1 =
1

a11a22 − a12a21

[
a22 −a12
−a21 a11

]
.

That is, switch the diagonal entries, multiply the off-diagonals by
−1, and divide the works by a11a22 − a12a21.

We can show that this is the inverse in class. Try it out on A on
the previous slide.
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Singular matrix

Not every square matrix has an inverse. For example

A =

[
−1 2

2 −4

]
,

does not. Try the formula on the previous slide out on this matrix.
What happens?

Square matrices that do not have an inverse are said to be singular.
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The two sample normal model in terms of matrices

Recall the two-sample normal model with equal variances:

Y11,Y12, . . . ,Y1n1
iid∼ N(µ1, σ

2),

Y21,Y22, . . . ,Y2n2
iid∼ N(µ2, σ

2).

We can rewrite this as

Yij = µi + εij ,

where
εij

iid∼ N(0, σ2),

where i = 1, 2 indexes the group (1 or 2) and j = 1, . . . , ni is the
observation within the group.
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Two sample normal model

Each piece of data Yij follows:

Y11 = µ1 + ε11

Y12 = µ1 + ε12

Y13 = µ1 + ε13
...

...
...

Y1n1 = µ1 + ε1n1

Y21 = µ2 + ε21

Y22 = µ2 + ε22

Y23 = µ2 + ε23
...

...
...

Y2n2 = µ2 + ε2n2
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Two sample normal model

Define the following vectors and matrices:

Y =



Y11

Y12
...

Y1n2

Y21

Y22
...

Y2n2


, X =



1 0
1 0
...

...
1 0
0 1
0 1
...

...
0 1


, β =

[
µ1
µ2

]
, and ε =



ε11
ε12
...
ε1n2
ε21
ε22
...
ε2n2


.
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Two sample normal model

Then we can write the model succinctly as

Y = Xβ + ε.

We’ll show this on the board for n1 = n2 = 3.
It turns out the the least squares estimators (and MLE’s!) for µ1
and µ2 are µ̂1 = n−11

∑n1
j=1 y1j = ȳ1 and µ̂2 = n−12

∑n2
j=1 y2j = ȳ2

are obtained in matrix terms as

β̂ =

[
µ̂1
µ̂2

]
= (X′X)−1X′y.
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Two sample normal model

We’ll show part of this:

X′X =

[
1 1 · · · 1 0 0 · · · 0
0 0 · · · 0 1 1 · · · 1

]


1 0
1 0
...

...
1 0
0 1
0 1
...

...
0 1


=

[
n1 0
0 n2

]
.

24 / 40



Two sample normal model

And so

(X′X)−1 =

[
n1 0
0 n2

]−1
=

[ 1
n1

0

0 1
n2

]
.

Also,

X′y =

[
1 1 · · · 1 0 0 · · · 0
0 0 · · · 0 1 1 · · · 1

]


y11
y12

...
y1n2
y21
y22

...
y2n2


=

[ ∑n1
j=1 y1j∑n2
j=1 y2j

]
.
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Two sample normal model

Then

(X′X)−1X′y =

[ 1
n1

0

0 1
n2

] [ ∑n1
j=1 y1j∑n2
j=1 y2j

]
=

[
ȳ1
ȳ2

]
=

[
µ̂1
µ̂2

]
,

as promised. The unbiased estimate of σ2 in terms of matrices is

MSE = (y−Xβ̂)′(y−Xβ̂)/(n1+n2−2) = ||y−Xβ̂||2/(n1+n2−2).

What is the point? Although the two-sample normal model is fairly
simple, very complex models with multiple predictors, both
categorical and continuous, can be written as

Y = Xβ + ε,

including the simple linear regression model, multiple regression
models, oneway and multiway ANOVA models, and ANCOVA
models.
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The linear model

In
Y = Xβ + ε

Y is the n × 1 data vector.

X is the n × p design matrix. Often the i th row of X is
comprised of p− 1 measurements taken on the i th subject in a
study, e.g. the i th row of an Excel spreadsheet, and an
intercept term.

β is the p × 1 coefficient vector. For the two-sample model,
p = 2 and β = (µ1, µ2).

ε is the n × 1 error vector. All the elements of ε are assumed
to be iid N(0, σ2).
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Example: Celts versus modern Englishmen

The Celts were a vigorous race of people who once populated parts
of England. It is not entirely clear whether they simply died out or
merged with other people who were the ancestors of those who live
in England today.

The maximum head breadths (mm) were measured on n2 = 16
unearthed Celtic skulls and on n1 = 18 modern-day Englishmen
skulls. It is of interest to determine and quantify differences in
skull size between the two populations.
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Look at the data...

data headbreadth;

input breadth group$ @@;

label breadth=’Skull breadth (mm)’ group=’Skull origin’;

datalines;

141 English 148 English 132 English 138 English 154 English 142 English 150 English

146 English 155 English 158 English 150 English 140 English 147 English 148 English

144 English 150 English 149 English 145 English 133 Celt 138 Celt 130 Celt

138 Celt 134 Celt 127 Celt 128 Celt 138 Celt 136 Celt 131 Celt

126 Celt 120 Celt 124 Celt 132 Celt 132 Celt 125 Celt

;

proc sgplot data=headbreadth;

hbox breadth / category=group; run;

proc glm plots=diagnostics;

class group;

model breadth=group / noint solution;

estimate "English-Celt" group -1 1; run;
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Side-by-side boxplots

Spread is roughly the same, we’ll fit a normal-errors model with
common variance

Yij = µi + εij , εij
iid∼ N(0, σ2).
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5.9 Simple linear regression in matrix terms

Recall the model
Yi = β0 + β1xi + εi ,

where εi
iid∼ N(0, σ2).

Place the data (Y1, . . . ,Yn), predictors (x1, . . . , xn), and trend
parameters (β0, β1) into vectors and matrices and write the data
and model as

Y1 = β0 + β1x1 + ε1

Y2 = β0 + β1x2 + ε2
...

Yn = β0 + β1xn + εn
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Simple linear regression

or equivalently in vector/matrix terms


Y1
Y2

.

.

.
Yn

 =


β0 + β1x1 + ε1
β0 + β1x2 + ε2

.

.

.
β0 + β1xn + εn

 =


β0 + β1x1
β0 + β1x2

.

.

.
β0 + β1xn

 +


ε1
ε2
.
.
.
εn

 =


1 x1
1 x2
.
.
.

.

.

.
1 xn


[
β0
β1

]
+


ε1
ε2
.
.
.
εn

 .

Define the vectors Y, β, and ε, and the matrix X as

Y =


Y1

Y2
...

Yn

 ,X =


1 x1
1 x2
...

...
1 xn

 ,β =

[
β0
β1

]
, ε =


ε1
ε2
...
εn

 .
The model is succinctly written

Y = Xβ + ε.

32 / 40



Simple linear regression

The model is

Yi = β0 + β1xi + εi i = 1, . . . , n ,

where the εi are iid N(0, σ2). In matrix terms the model can be
written 

Y1

Y2
...

Yn

 =


1 x1
1 x2
...

...
1 xn


[
β0
β1

]
+


ε1
ε2
...
εn


Yn×1 = Xn×2 β2×1 + εn×1
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5.10 Least squares estimation (pp. 199–200)

As before, it can be shown through some matrix manipulations
(not terribly hard, but not illuminating either) that the least
squares estimators for (β0, β1) are given by

β̂ =

[
b0

b1

]
= (X′X)−1X′Y.

This is a function of the matrix X (called the design matrix) and
the data Y only. The unbiased estimator of σ2 can be written in
terms of b0 and b1 as

MSE =
1

n − 2

n∑
i=1

(yi − [b0 + b1xi ])
2 =

1

n − 2
||Y − Xβ̂||2.

34 / 40



Example: Coleman Report Data

Mosteller and Tukey (1977) and Christensen (1996) considered
data collected from n = 20 schools in the New England and
Mid-Atlantic states of the USA.

There are two variables: Yi , the overall verbal test score for sixth
graders and xi , a composite measure of socioeconomic status. The
data are presented in the following table.

We wish to predict Y based on x and test whether there is a
relationship between socioeconomic status and verbal test scores.
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Coleman report data

School y x School y x

1 37.01 7.20 11 23.30 −12.86
2 26.51 −11.71 12 35.20 0.92
3 36.51 12.32 13 34.90 4.77
4 40.70 14.28 14 33.10 −0.96
5 37.10 6.31 15 22.70 −16.04
6 33.90 6.16 16 39.70 10.62
7 41.80 12.70 17 31.80 2.66
8 33.40 −0.17 18 31.70 −10.99
9 41.01 9.85 19 43.10 15.03

10 37.20 −0.05 20 41.01 12.77
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Look at the data...

data coleman;

input verbal ses @@;

label verbal=’verbal test score’ ses=’socioeconomic status’;

datalines;

37.01 7.20 23.30 -12.86 26.51 -11.71 35.20 0.92

36.51 12.32 34.90 4.77 40.70 14.28 33.10 -0.96

37.10 6.31 22.70 -16.04 33.90 6.16 39.70 10.62

41.80 12.70 31.80 2.66 33.40 -0.17 31.70 -10.99

41.01 9.85 43.10 15.03 37.20 -0.05 41.01 12.77

;

proc sgscatter data=coleman;

plot verbal*ses; run;

options nocenter;

proc glm plots=diagnostics;

model verbal=ses / solution;

run;

Linear increasing trend; roughly constant variance, we’ll fit

Yi = β0 + β1xi + εi , εi
iid∼ N(0, σ2).
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Scatterplot
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Coleman Report data in matrix terms

X =



1 7.2
1 −11.71
1 12.32
1 14.28
1 6.31
1 6.16
1 12.7
1 −0.17
1 9.85
1 −0.05
1 −12.86
1 0.92
1 4.77
1 −0.96
1 −16.04
1 10.62
1 2.66
1 −10.99
1 15.03
1 12.77



, and y =



37.01
26.51
36.51
40.7
37.1
33.9
41.8
33.4
41.01
37.2
23.3
35.2
34.9
33.1
22.7
39.7
31.8
31.7
43.1
41.01



.
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Matrix computations by hand...

This yields

X′X =

[
20 62.81

62.81 1957.57

]
, (X′X)−1 =

[
0.05560 −0.00178
−0.00178 0.000568

]
, and X′y =

[
701.65
3189.9

]
.

So the least squares estimates are

β̂ = (X′X)−1X′y =

[
0.05560 −0.00178
−0.00178 0.000568

] [
701.65
3189.9

]
=

[
33.3
0.56

]
.

So our best guess of the unknown β = (β0, β1) is given by
β̂ = (β̂0, β̂1) = (33.3, 0.56). So our best guess for the overall
population trend is

Ê (Y ) = 33.3 + 0.56x .

For every unit increase in socioeconomic status, we see on average
an increase of 0.56 in the overall verbal test scores.
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