### Sections 2.11 and 5.8 ### Adapted from Timothy Hanson Department of Statistics, University of South Carolina Stat 704: Data Analysis I ### Gesell data Let X be the age in in months a child speaks his/her first word and let Y be the Gesell adaptive score, a measure of a child's aptitude (observed later on). Are X and Y related? How does the child's aptitude *change* with how long it takes them to speak? Here's the Gesell score $y_i$ and age at first word in months $x_i$ data, i = 1, ..., 21. | Xi | Уi | x <sub>i</sub> | Уi | |----|-----|----------------|-----|----------------|-----|----------------|-----|----------------|-----| | 15 | 95 | 26 | 71 | 10 | 83 | 9 | 91 | 15 | 102 | | 20 | 87 | 18 | 93 | 11 | 100 | 8 | 104 | 20 | 94 | | 7 | 113 | 9 | 96 | 10 | 83 | 11 | 84 | 11 | 102 | | 10 | 100 | 12 | 105 | 42 | 57 | 17 | 121 | 11 | 86 | | 10 | 100 | | | | | | | | | In R, we compute r = -0.640, a moderately strong negative relationship between age at first word spoken and Gesell score. <sup>&</sup>gt; age=c(15,26,10,9,15,20,18,11,8,20,7,9,10,11,11,10,12,42,17,11,10) <sup>&</sup>gt; Gesell=c(95,71,83,91,102,87,93,100,104,94,113,96,83,84,102,100,105,57,121,86,100) <sup>&</sup>gt; plot(age,Gesell) <sup>&</sup>gt; cor(age,Gesell) <sup>[1] -0.64029</sup> # Scatterplot of $(x_1, y_1), \ldots, (x_{21}, y_{21})$ ### Random vectors A random vector $$\mathbf{X} = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_k \end{bmatrix}$$ is made up of, say, $k$ random variables. A random vector has a joint distribution, e.g. a density $f(\mathbf{x})$ , that gives probabilities $$P(\mathbf{X} \in A) = \int_A f(\mathbf{x}) d\mathbf{x}.$$ Just as a random variable X has a mean E(X) and variance var(X), a random vector also has a mean vector $E(\mathbf{X})$ and a covariance matrix $cov(\mathbf{X})$ . ### Mean vector & covariance matrix Let $\mathbf{X} = (X_1, \dots, X_k)$ be a random vector with density $f(x_1, \dots, x_k)$ . The mean of $\mathbf{X}$ is the vector of marginal means $$E(\mathbf{X}) = E\left(\begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_k \end{bmatrix}\right) = \begin{bmatrix} E(X_1) \\ E(X_2) \\ \vdots \\ E(X_k) \end{bmatrix}. \tag{5.38}$$ The covariance matrix of X is given by $$cov(\mathbf{X}) = \begin{bmatrix} cov(X_1, X_1) & cov(X_1, X_2) & \cdots & cov(X_1, X_k) \\ cov(X_2, X_1) & cov(X_2, X_2) & \cdots & cov(X_2, X_k) \\ \vdots & \vdots & \ddots & \vdots \\ cov(X_k, X_1) & cov(X_k, X_2) & \cdots & cov(X_k, X_k) \end{bmatrix}. (5.42)$$ ### Multivariate normal distribution The normal distribution generalizes to multiple dimensions. We'll first look at two jointly distributed normal random variables, then discuss three or more. The bivariate normal density for $(X_1, X_2)$ is given by $f(x_1, x_2) =$ $$\frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}\exp\left\{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{\mathbf{x}_1-\mu_1}{\sigma_1}\right)^2-2\rho\left(\frac{\mathbf{x}_1-\mu_1}{\sigma_1}\right)\left(\frac{\mathbf{x}_2-\mu_2}{\sigma_2}\right)+\left(\frac{\mathbf{x}_2-\mu_2}{\sigma_2}\right)^2\right]\right\}.$$ There are 5 parameters: $(\mu_1, \mu_2, \sigma_1, \sigma_2, \rho)$ . Besides 5.8, also see 2.11 pp.78-83. ### Bivariate normal distribution - This density jointly defines $X_1$ and $X_2$ , which live in $\mathbb{R}^2 = (-\infty, \infty) \times (-\infty, \infty)$ . - Marginally, $X_1 \sim N(\mu_1, \sigma_1^2)$ and $X_2 \sim N(\mu_2, \sigma_2^2)$ (p. 79). - The correlation between $X_1$ and $X_2$ is given by $corr(X_1, X_2) = \rho$ (p. 80). - For jointly normal random variables, if the correlation is zero then they are independent. This is not true in general for jointly defined random variables. - $E(\mathbf{X}) = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}$ , $cov(\mathbf{X}) = \begin{bmatrix} \sigma_1^2 & \sigma_1 \sigma_2 \rho \\ \sigma_1 \sigma_2 \rho & \sigma_2^2 \end{bmatrix}$ . # Bivariate normal PDF level curves # Proof that $X_1$ indeendent $X_2$ when $\rho = 0$ When $\rho = 0$ the joint density for $(X_1, X_2)$ simplifies to $$f(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2} \exp\left\{-\frac{1}{2} \left[ \left(\frac{x_1 - \mu_1}{\sigma_1}\right)^2 + \left(\frac{x_2 - \mu_2}{\sigma_2}\right)^2 \right] \right\}$$ $$= \left[ \frac{1}{\sqrt{2\pi}\sigma_1} e^{-0.5\left(\frac{x_1 - \mu_1}{\sigma_1}\right)^2} \right] \left[ \frac{1}{\sqrt{2\pi}\sigma_2} e^{-0.5\left(\frac{x_2 - \mu_2}{\sigma_2}\right)^2} \right].$$ Since these are each respectively functions of $x_1$ and $x_2$ only, and the range of $(X_1, X_2)$ factors into the produce of two sets, $X_1$ and $X_2$ are independent and in fact $X_1 \sim N(\mu_1, \sigma_1^2)$ and $X_2 \sim N(\mu_2, \sigma_2^2)$ . # Conditional distributions $[X_1|X_2=x_2]$ and $[X_2|X_1=x_1]$ (pp. 80–81) The conditional distribution of $X_1$ given $X_2 = x_2$ is $$[X_1|X_2=x_2] \sim N\left(\mu_1 + \frac{\sigma_1}{\sigma_2}\rho(x_2-\mu_2), \sigma_1^2(1-\rho^2)\right).$$ Similarly, $$[X_2|X_1=x_1] \sim N\left(\mu_2 + \frac{\sigma_2}{\sigma_1}\rho(x_1-\mu_1), \sigma_2^2(1-\rho^2)\right).$$ This ties directly to linear regression: To predict $X_2|X_1=x_1$ , we have $$E(X_2|X_1=x_1)=\left[\mu_2-\frac{\sigma_2}{\sigma_1}\rho\mu_1\right]+\left[\frac{\sigma_2}{\sigma_1}\rho\right]x_1=\beta_0+\beta_1x_1.$$ ### Bivariate normal distribution as data model Here we assume $$\left[\begin{array}{c} X_{i1} \\ X_{i2} \end{array}\right] \stackrel{\textit{iid}}{\sim} N_2 \left(\left[\begin{array}{c} \mu_1 \\ \mu_2 \end{array}\right], \ \left[\begin{array}{cc} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{array}\right]\right),$$ or succinctly, $$\mathbf{X}_i \stackrel{iid}{\sim} N_2(\boldsymbol{\mu}, \boldsymbol{\Sigma}).$$ If the bivariate normal model is appropriate for paired outcomes, it provides a convenient probability model with some nice properties. Say *n* outcome pairs are to be recorded: $$\{(X_{11}, X_{12}), (X_{21}, X_{22}), \dots, (X_{n1}, X_{n2})\}$$ . The $i^{th}$ pair is $(X_{i1}, X_{i2})$ . ### Sample mean vector & covariance matrix The sample mean vector is given elementwise by $$\bar{\mathbf{X}} = \begin{bmatrix} \bar{X}_1 \\ \bar{X}_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{n} \sum_{i=1}^n X_{i1} \\ \frac{1}{n} \sum_{i=1}^n X_{i2} \end{bmatrix},$$ and the sample covariance matrix is given elementwise by $$\mathbf{S} = \left[ \begin{array}{cc} \frac{1}{n-1} \sum_{i=1}^{n} (X_{i1} - \bar{X}_1)^2 & \frac{1}{n-1} \sum_{i=1}^{n} (X_{i1} - \bar{X}_1)(X_{i2} - \bar{X}_2) \\ \frac{1}{n-1} \sum_{i=1}^{n} (X_{i1} - \bar{X}_1)(X_{i2} - \bar{X}_2) & \frac{1}{n-1} \sum_{i=1}^{n} (X_{i2} - \bar{X}_2)^2 \end{array} \right].$$ ### Sample mean vector & covariance matrix The sample mean $\bar{\mathbf{X}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}$ is the MLE of $\boldsymbol{\mu}$ and the sample covariance matrix $\mathbf{S} = \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{X}_{i} - \bar{\mathbf{X}}) (\mathbf{X}_{i} - \bar{\mathbf{X}})'$ is unbiased for $\boldsymbol{\Sigma}$ . It can be shown that $$ar{\mathbf{X}} \sim N_2\left(oldsymbol{\mu}, rac{1}{n}oldsymbol{\Sigma} ight).$$ The matrix (n-1)**S** has a "Wishart" distribution (generalizes $\chi^2$ ). ### Estimation The sample mean vector $ar{\mathbf{X}}$ estimates $oldsymbol{\mu} = \left| egin{array}{c} \mu_1 \\ \mu_2 \end{array} \right|$ and the sample covariance matrix S estimates $$\mathbf{\Sigma} = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix} = \begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{bmatrix}.$$ We will place hats on parameter estimators based on the data. So $$\hat{\mu}_1 = \bar{X}_1, \ \hat{\mu}_2 = \bar{X}_2, \ \hat{\sigma}_1^2 = s_1^2 = \frac{1}{n-1} \sum_{i=1}^n (X_{i1} - \bar{X}_1)^2,$$ $$\hat{\sigma}_2^2 = s_2^2 = \frac{1}{n-1} \sum_{i=1}^n (X_{i2} - \bar{X}_2)^2.$$ Also, $$\widehat{cov}(X_1, X_2) = \frac{1}{n-1} \sum_{i=1}^n (X_{i1} - \bar{X})(X_{i2} - \bar{X}_2).$$ ### Correlation coefficient r So a natural estimate of $\rho$ is then $$\hat{\rho} = \frac{\widehat{cov}(X_1, X_2)}{\hat{\sigma}_1 \hat{\sigma}_2} = \frac{\frac{1}{n-1} \sum_{i=1}^n (X_{i1} - \bar{X}_1)(X_{i2} - \bar{X}_2)}{\sqrt{\frac{1}{n-1} \sum_{i=1}^n (X_{i1} - \bar{X}_1)^2} \sqrt{\frac{1}{n-1} \sum_{i=1}^n (X_{i1} - \bar{X}_1)^2}}.$$ This is in fact the MLE estimate based on the bivariate normal model. It is also a "plug-in" estimator based on the method-of-moments as well as the now-familiar Pearson correlation coefficient. ### Gesell data Recall: X is age in months a child speaks his/her first word and let Y is Gesell adaptive score, a measure of a child's aptitude. *Question*: how does the child's aptitude *change* with how long it takes them to speak? Here, n = 21. In R we find $$\bar{\mathbf{X}} = \begin{bmatrix} 14.38 \\ 93.67 \end{bmatrix}$$ . Also, $\mathbf{S} = \begin{bmatrix} 60.14 & -67.78 \\ -67.78 & 186.32 \end{bmatrix}$ . Assuming a bivariate model, we plug in the estimates and obtain the estimated PDF for (X, Y): $$f(x,y) = \exp(-60.22 + 1.3006x - 0.0134x^2 + 0.9520y - 0.0098xy - 0.0043y^2).$$ We can further find from $Y \stackrel{\bullet}{\sim} N(93.67, 186.32)$ , $$f_Y(y) = \exp(-3.557 - 0.00256(y - 93.67)^2).$$ # 3D plot of f(x, y) for (X, Y) estimated from data ### Gesell conditional distribution Solid is $f_Y(y)$ ; left dashed is $f_{Y|X}(y|25)$ the right dashed is # Density estimate with actual data ### Multivariate normal distribution In general, a *k*-variate normal is defined through the mean and covariance matrix: $$\begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_k \end{bmatrix} \sim N_k \begin{pmatrix} \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_k \end{bmatrix}, \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1k} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{k1} & \sigma_{k2} & \cdots & \sigma_{kk} \end{bmatrix} \end{pmatrix}.$$ Succinctly, $$\mathbf{X} \sim N_k(\boldsymbol{\mu}, \boldsymbol{\Sigma}).$$ Recall that if $Z \sim N(0,1)$ , then $X = \mu + \sigma Z \sim N(\mu, \sigma^2)$ . The definition of the multivariate normal distribution just extends this idea. ### Multivariate normal made from independent normals Instead of one standard normal, we have a list of k independent standard normals $\mathbf{Z} = (Z_1, \dots, Z_k)$ , and consider the same sort of transformation in the multivariate case using matrices and vectors. Let $Z_1, \ldots, Z_k \stackrel{iid}{\sim} N(0,1)$ . The joint pdf of $(Z_1, \ldots, Z_k)$ is given by $$f(z_1,\ldots,z_k) = \prod_{i=1}^k \exp(-0.5z_i^2)/\sqrt{2\pi}.$$ Let $$\boldsymbol{\mu} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_k \end{bmatrix} \text{ and } \boldsymbol{\Sigma} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1k} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{k1} & \sigma_{k2} & \cdots & \sigma_{kk} \end{bmatrix},$$ where $\Sigma$ is symmetric (i.e. $\Sigma' = \Sigma$ , which implies $\sigma_{ij} = \sigma_{ji}$ for all $1 \le i, j \le k$ ). ### Multivariate normal made from independent normals Let $\mathbf{\Sigma}^{1/2}$ be any matrix such that $\mathbf{\Sigma}^{1/2}\mathbf{\Sigma}^{1/2}=\mathbf{\Sigma}$ . Then $\mathbf{X}=\boldsymbol{\mu}+\mathbf{\Sigma}^{1/2}\mathbf{Z}$ is said to have a multivariate normal distribution with mean vector $\boldsymbol{\mu}$ and covariance matrix $\mathbf{\Sigma}$ , written $$\mathbf{X} \sim N_k(\boldsymbol{\mu}, \boldsymbol{\Sigma}).$$ Written in terms of matrices $$\mathbf{X} = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_k \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_k \end{bmatrix} + \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1k} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{k1} & \sigma_{k2} & \cdots & \sigma_{kk} \end{bmatrix}^{1/2} \begin{bmatrix} Z_1 \\ Z_2 \\ \vdots \\ Z_k \end{bmatrix}.$$ ### Joint PDF Using some math, it can be shown that the pdf of the new vector $\mathbf{X} = (X_1, \dots, X_k)$ is given by $$f(x_1,...,x_k|\mu,\Sigma) = |2\pi\Sigma|^{-1/2} \exp\{-0.5(\mathbf{x}-\mu)'\Sigma^{-1}(\mathbf{x}-\mu)\}.$$ In the one-dimensional case, this simplifies to our old friend $$f(x_1|\mu,\sigma^2) = (2\pi\sigma^2)^{-1/2} \exp\{-0.5(x-\mu)(\sigma^2)^{-1}(x-\mu)\},$$ the pdf of a $N(\mu, \sigma^2)$ random variable X. $|\mathbf{A}|$ is the determinant of the matrix $\mathbf{A}$ , and is a function of the elements of $\mathbf{A}$ , but beyond this course. # Properties of multivariate normal vectors Let $$\mathbf{X} \sim N_k(\boldsymbol{\mu}, \boldsymbol{\Sigma}).$$ Then - For each $X_i$ in $\mathbf{X} = (X_1, \dots, X_k)$ , $E(X_i) = \mu_i$ and $var(X_i) = \sigma_{ii}$ . That is, marginally, $X_i \sim N(\mu_i, \sigma_{ii})$ . - ② For any two $(X_i, X_j)$ where $1 \leq i < j \leq k$ , $cov(X_i, X_j) = \sigma_{ij}$ . The off-diagonal elements of $\Sigma$ give the covariance between two elements of $(X_1, \ldots, X_k)$ . Note then $\rho(X_i, X_j) = \sigma_{ij} / \sqrt{\sigma_{ii}\sigma_{jj}}$ . # Properties of multivariate normal vectors Let $$\mathbf{X} \sim N_k(\boldsymbol{\mu}, \boldsymbol{\Sigma}).$$ Then • For any $r \times k$ matrix **M**, $$\mathsf{MX} \sim N_r(\mathsf{M}\boldsymbol{\mu}, \mathsf{M}\boldsymbol{\Sigma}\mathsf{M}').$$ - ② For any $k \times 1$ vector $\mathbf{m} = (m_1, \dots, m_k)$ , $\mathbf{m} + \mathbf{X} \sim N_k(\mathbf{m} + \boldsymbol{\mu}, \boldsymbol{\Sigma})$ . - **3** For $r_1 \times k$ matrix $\mathbf{M_1}$ and $r_2 \times k$ matrix $\mathbf{M_2}$ , the joint distribution of $\mathbf{M_1Y}$ and $\mathbf{M_2Y}$ can be found as $$\left(\begin{array}{c} \mathbf{M_1} \\ \mathbf{M_2} \end{array}\right) \mathbf{Y} \sim \textit{N}_{\textit{r}_1 + \textit{r}_2} \left( \left(\begin{array}{c} \mu_1 \\ \mu_2 \end{array}\right), \left(\begin{array}{cc} \mathbf{M_1} \boldsymbol{\Sigma} \mathbf{M_1'} & \mathbf{M_1} \boldsymbol{\Sigma} \mathbf{M_2'} \\ \mathbf{M_2} \boldsymbol{\Sigma} \mathbf{M_1'} & \mathbf{M_2} \boldsymbol{\Sigma} \mathbf{M_2'} \end{array}\right) \right)$$ # Example #### Let $$\left[\begin{array}{c}X_1\\X_2\\X_3\end{array}\right]\sim N_3\left(\left[\begin{array}{ccc}-2\\5\\0\end{array}\right],\left[\begin{array}{cccc}2&1&1\\1&3&-1\\1&-1&4\end{array}\right]\right).$$ E.g., $X_2 \sim N(5,3)$ and $cov(X_2, X_3) = -1$ . #### Define $$\mathbf{M} = \left[ \begin{array}{ccc} 1 & 0 & -1 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{array} \right] \text{ and } \mathbf{Y} = \left[ \begin{array}{ccc} Y_1 \\ Y_2 \end{array} \right] = \mathbf{M} \mathbf{X} = \left[ \begin{array}{ccc} 1 & 0 & -1 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{array} \right] \left[ \begin{array}{c} X_1 \\ X_2 \\ X_3 \end{array} \right].$$ # Example Then $$\begin{bmatrix} 1 & 0 & -1 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} \sim$$ $$N_2 \left( \begin{bmatrix} 1 & 0 & -1 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} -2 \\ 5 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & -1 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 3 & -1 \\ 1 & -1 & 4 \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{3} \\ 0 & \frac{1}{3} \\ -1 & \frac{1}{3} \end{bmatrix} \right),$$ or simplifying, $$\left[\begin{array}{c} Y_1 \\ Y_2 \end{array}\right] = \left[\begin{array}{ccc} 1 & 0 & -1 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{array}\right] \left[\begin{array}{c} X_1 \\ X_2 \\ X_3 \end{array}\right] \sim N_2 \left(\left[\begin{array}{ccc} -2 \\ 1 \end{array}\right], \left[\begin{array}{ccc} 4 & 0 \\ 0 & \frac{11}{9} \end{array}\right]\right).$$ Note that for the transformed vector $\mathbf{Y}=(Y_1,Y_2)$ , $cov(Y_1,Y_2)=0$ and therefore $Y_1$ and $Y_2$ are uncorrelated, i.e. $\rho(Y_1,Y_2)=0$ . # Simple linear regression For the linear model (e.g. simple linear regression or the two-sample model) $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ , the error vector is assumed (pp. 222–223) $$\epsilon \sim N_n(\mathbf{0}, \mathbf{I}_{n \times n} \sigma^2).$$ Then the least squares estimators have a multivariate normal distribution $$\widehat{\boldsymbol{\beta}} \sim N_p(\boldsymbol{\beta}, (\mathbf{X}'\mathbf{X})^{-1}\sigma^2).$$ p=2 is the number of mean parameters. (The MSE has a gamma distribution). We'll discuss this shortly!