Sections 2.11 and 5.8

Adapted from Timothy Hanson
Department of Statistics, University of South Carolina

Stat 704: Data Analysis |
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Gesell data

Let X be the age in in months a child speaks his/her first word
and let Y be the Gesell adaptive score, a measure of a child's
aptitude (observed later on). Are X and Y related? How does the
child’s aptitude change with how long it takes them to speak?

Here's the Gesell score y; and age at first word in months x; data,
i=1,...,21

[ x  yilx  yilx  yilx yi|lx yi]
15 95 | 26 71 | 10 83 9 91 | 15 102
20 87 | 18 93 | 11 100 8 104 | 20 94

7 113 9 96 | 10 83 | 11 84 | 11 102
10 100 | 12 105 | 42 57 | 17 121 | 11 86
10 100

In R, we compute r = —0.640, a moderately strong negative
relationship between age at first word spoken and Gesell score.

> age=c(15,26,10,9,15,20,18,11,8,20,7,9,10,11,11,10,12,42,17,11,10)

> Gesell=c(95,71,83,91,102,87,93,100,104,94,113,96,83,84,102,100,105,57,121,86,100)
> plot(age,Gesell)

> cor(age,Gesell)

[1] -0.64029
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Scatterplot of (x, y1), ..., (X1, y21)
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Random vectors

X1

X2
A random vector X = . is made up of, say, k random

Xk
variables.

A random vector has a joint distribution, e.g. a density f(x), that
gives probabilities

P(X e A) = / f(x)dx.
A
Just as a random variable X has a mean E(X) and variance
var(X), a random vector also has a mean vector E(X) and a
covariance matrix cov(X).



Mean vector & covariance matrix

Let X = (Xi,...,Xk) be a random vector with density

f(x1,...,xk). The mean of X is the vector of marginal means
X1 E(X1)
Xo E(X3)
E(X)=E . = . (5.38)
Xk E(Xy)

The covariance matrix of X is given by

COV()<17 Xl) COV(Xl, X2) s COV(Xl, Xk)
COV()(Q7 Xl) COV()(27 X2) tee cov Xz, Xk

cov(X) = . : , ( : ) (5.42)
cov(Xk, X1) cov(Xk, Xa) -+ cov(Xk, Xk)



Multivariate normal distribution

The normal distribution generalizes to multiple dimensions. We'll
first look at two jointly distributed normal random variables, then
discuss three or more.

The bivariate normal density for (X1, X2) is given by f(x1,x2) =

1 1 (X1—u1)2 (Xl—m)(xz—/tz) (Xz—uz)2
exp ¢ — —2p + .
2wo1o9y/1 — p? 2(1 — p?) o1 o1 e e

There are 5 parameters: (u1, 2,01, 02, p).

Besides 5.8, also see 2.11 pp.78-83.
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Bivariate normal distribution

@ This density jointly defines X and X, which live in
R? = (—00,00) x (—00, 00).

e Marginally, X; ~ N(u1,0%) and Xa ~ N(p2,03) (p. 79).

@ The correlation between Xj and X is given by
corr(X1, X2) = p (p. 80).

@ For jointly normal random variables, if the correlation is zero
then they are independent. This is not true in general for
jointly defined random variables.

O'2 010
o E(X) = [ Z; } cov(X) = [ iy 1(5” ]



Bivariate normal PDF level curves
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Proof that X; indpendent X, when p =0

When p = 0 the joint density for (X1, X2) simplifies to

f(x1,x2) = L ex Lazm 2—i— x2 =iz’
LA2) = 2mo109 P 2 o1 0
=i\ 2 o\ 2
— [ 1 e—0.5( 101;11) } [ 1 e_O'S( 20;2) ] .
V270, \V2mos

Since these are each respectively functions of x; and x» only, and
the range of (X1, X3) factors into the produce of two sets, X; and
X> are independent and in fact X; ~ N(ul,a%) and

X2 ~ N(Mz,O'%).




Conditional distributions [X1| X = xo] and [X3| X1 = x]

(pp. 80-81)

The conditional distribution of X; given Xo = x; is

g
abe =l ~ N (11 + 2 ploe = ), 031 - 9)).

Similarly,

g
el =l ~ N (12 + 2o = ), 031 2)).

This ties directly to linear regression:

To predict X3| X1 = x1, we have
o o
E(Xe|X1 =x) = [Mz - zpm] + [2/)} x1 = o + fixi.
01 01
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Bivariate normal distribution as data model

Here we assume
[ lEe(m] [ 2]
or succinctly, )
X; & No(p, X).

If the bivariate normal model is appropriate for paired outcomes, it
provides a convenient probability model with some nice properties.

Say n outcome pairs are to be recorded:
{(X11, X12), (X21, X22), - - -, (Xn1, Xn2)}. The i™ pair is (X1, Xj2).
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Sample mean vector & covariance matrix

The sample mean vector is given elementwise by

(] ({8
X2 2 i X |

and the sample covariance matrix is given elementwise by

30 (X = X1)? (X = X) (X = X)
LY (X — X)) (X2 — X2) 755 2 (X2 — X2)?
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Sample mean vector & covariance matrix

The sample mean X = %27:1 X; is the MLE of_u and the sample
covariance matrix S = nil 7 1(Xi — X)(X; — X)' is unbiased for
Y.

It can be shown that

_ 1
X ~ Ny <u,n>:>.

The matrix (n — 1)S has a “Wishart” distribution (generalizes x?).
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1

H } and the sample
H2

The sample mean vector X estimates p = [
covariance2 matrix S estimates
> — 01 poLo2 | _ | 011 012
poioy 03 021 022 |’
We will place hats on parameter estimators based on the data. So

n

. . > . 1 =
fi1 = X1, fio=Xo, 63 =5} = Z(Xil - X1)?,

n—14+4
i=1
1 n
A2 2 Y \2
0y =5 = (XI2 - X2)
n—1 —
Also,
1 n
cov(Xy, Xp) = —— (Xi1 = X)(Xi2 — X2)

14 /28



Correlation coefficient r

So a natural estimate of p is then

P cov(X1, X2) _ LS (X — Xo) (X2 — Xo)
7192 nil Z?:I(Xil - )_<1)2 nil 27:1()([1 - )_<1)2

This is in fact the MLE estimate based on the bivariate normal
model. It is also a “plug-in" estimator based on the
method-of-moments as well as the now-familiar Pearson correlation
coefficient.
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Gesell data

Recall: X is age in months a child speaks his/her first word and let
Y is Gesell adaptive score, a measure of a child’s aptitude.
Question: how does the child’s aptitude change with how long it
takes them to speak? Here, n = 21.

T 1438 60.14 —67.78
In R we find X = [ 93.67 } Also, § = { ~67.78  186.32 |

Assuming a bivariate model, we plug in the estimates and obtain
the estimated PDF for (X, Y):

f(x,y) = exp(—60.22+1.3006x—0.0134x%+0.9520y —0.0098xy —0.0043y?).

We can further find from Y < N(93.67,186.32),

fy(y) = exp(—3.557 — 0.00256(y — 93.67)%).
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3D plot of f(x,y) for (X, Y) estimated from data
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Gesell conditional distribution
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Density estimate with actual data
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Multivariate normal distribution

In general, a k-variate normal is defined through the mean and
covariance matrix:

X1 M1 011 012 - Ok
X2 12 021 02 -t O
~ N I .
Xk Hk Okl Ok2 **+ Okk
Succinctly,
X ~ Ni(p, E).

Recall that if Z ~ N(0,1), then X = p+ 0 Z ~ N(i,02). The
definition of the multivariate normal distribution just extends this
idea.
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Multivariate normal made from independent normals

Instead of one standard normal, we have a list of k independent
standard normals Z = (Zi, ..., Zk), and consider the same sort of
transformation in the multivariate case using matrices and vectors.

Let Z1,...,Zk i N(0,1). The joint pdf of (Z1, ..., Zk) is given by

K
flz1,...,zx) = Hexp(—O.Sz,?)/\/%.
i=1

Let
%1 011 012 -+ O1k
H2 021 022 -+ 02k
B= . and X = . . . ;
Mk Okl Ok2 - Okk

where X is symmetric (i.e. £’ = X, which implies oj; = o;; for all
1<i,j<k).
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Multivariate normal made from independent normals

Let X'/2 be any matrix such that £/25Y2 = ¥ Then
X=p+ 127 is said to have a multivariate normal distribution

with mean vector v and covariance matrix X, written
X ~ Ni(p, X).
Written in terms of matrices

1/2

X1 1 011 012 ' Ok V4l

X2 2 021 02 - O 2>
X = = + . .

Xk ik Okl Ok2 “** Okk Z



Joint PDF

Using some math, it can be shown that the pdf of the new vector
X = (Xi,...,Xk) is given by

FOxa, - X, E) = 27572 exp{—0.5(x — ) T} (x — )}
In the one-dimensional case, this simplifies to our old friend
sl 0?) = (2mo2) "2 exp{=0.5(x — u)(0?) " (x — )},

the pdf of a N(u,o?) random variable X.

|A| is the determinant of the matrix A, and is a function of the
elements of A, but beyond this course.
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Properties of multivariate normal vectors

Let
X ~ Ni(p, X).
Then
@ For each X; in X = (X1,...,Xk), E(X;) = p; and
var(X;) = oj;. That is, marginally, X; ~ N(u;, o).
@ For any two (Xj, Xj) where 1 < j < j < k, cov(X;, Xj) = oj;.
The off-diagonal elements of X give the covariance between
two elements of (Xi,..., Xk). Note then

p(Xi, Xj) = 0ij/ \/Tii;.
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Properties of multivariate normal vectors

Let
X ~ Ni(p, X).

Then
© For any r x k matrix M,

MX ~ N,(Mp, MEM').

@ For any k x 1 vector m = (my, ..., my),
m+ X ~ Ne(m+ p, X).

© For r1 x k matrix My and r, x k matrix Mj, the joint
distribution of M1Y and M»Y can be found as

Mi\y .y m M;EM; M;ZM,
M, e\ g2 )\ MaEIM) MpEIM,
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Let

|

X1
X2
X3

R

Eg. X ~ N(5,3) and cov(Xp, X3) = —L.

Define
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Note that for the transformed vector Y = (Y1, Y2),

cov(Y1, Y2) = 0 and therefore Y7 and Y2 are uncorrelated, i.e.

p(Yl, Yz) =0.

(R TRIT
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Simple linear regression

For the linear model (e.g. simple linear regression or the
two-sample model) Y = X3 + €, the error vector is assumed (pp.
222-223)

€ ~ Ny(0, I, n0?).

Then the least squares estimators have a multivariate normal
distribution R

B~ No(B, (X'X)"1o?).
p = 2 is the number of mean parameters. (The MSE has a gamma
distribution).

We'll discuss this shortly!
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