Notes on Kernel Density Estimation

The R function \texttt{density} handles most of the estimation approaches we studied in class. R also has a library (KernSmooth) of kernel density functions, but it seemed a bit piecemeal and outdated.

We can load the \texttt{datasets} package in R, and estimated the density of both \texttt{eruptions} and \texttt{waiting} of the \texttt{faithful} data (that’s Old Faithful) using default options in \texttt{density}. Note that the default title and x axis for the \texttt{density} command are not attractive and should always be relabelled. If you do not remember the name of the \texttt{faithful} data set, you can use the \texttt{ls} command to look at the names of all the data sets to refresh your memory. The \texttt{summary} command will provide variable names. An alternative (and more attractive option) would be to enter \texttt{data()}, find \texttt{volcano} on the list, and then type \texttt{help(volcano)}. The first approach is recreated below.

\begin{verbatim}
search() # Find the package "datasets" position on the list
ls(pos=8) # The list of "datasets" includes "faithful"
summary(faithful)
attach(faithful)
plot(density(eruptions),main="Density Estimate of Eruption Duration",
 xlab="Duration in Minutes")
plot(density(waiting),main="Density Estimate of Eruption Interval",
 xlab="Interval in Minutes")
\end{verbatim}

The default bandwidth method is \texttt{bw="nrd0"}; this is Silverman’s Rule of Thumb method \((b = .9\min(s, IQR/1.34)m^{-1/5})\), and often oversmooths. The bandwidth used for the plot is printed at the bottom of the page and also included as part of the \texttt{density} command output. Feel free to adjust the bandwidth by specifying a constant as we did in class (E.g., \texttt{bw=.25}).

\begin{verbatim}
plot(density(eruptions,bw=.25),main="Density Estimate of Eruption Duration",
 xlab="Duration in Minutes")
\end{verbatim}

LSCV

The package \texttt{locfit} can produce LSCV plots using the \texttt{lscvplot} command, though the command is currently misbehaving on our system, perhaps because our version of R isn’t quite up-to-date. In the interim, I have included code to generate a plot. The code requires numerical integration of the square of the
kernel density estimate. **CAUTION:** The `integrate` function in R passes the vector of all quadrature points to the function that evaluates the integrand. Make absolutely sure your function can evaluate a vector rather than just a scalar.

The function I’ve written (`lscv`) may need some fine-tuning of the range of the bandwidth, and the function `kern` can be changed from the default normal density kernel. Results from the output generally agree with the bandwidth generated by `density` using the `bw="ucv"` option; differences may occur since I evaluate an approximation of the LSCV function, while R uses exact methods. Other than that, here is the typical usage:

```r
source("z:/stat 740/lscv.txt") # Skip this step if you’re pasting # the file directly into R
attach(faithful)
lscv(waiting)
```

The estimated bandwidth is based on s, so the procedure is easily “fooled” by bimodal data. In such cases, the default scaling limits ($s_1=.5, s_2=2.5$) can be changed in the call to `lscv`. This is absolutely necessary for `eruptions`, for instance, which requires a very small bandwidth.